We are interested in the motion of a simple mechanical system having a finite number of degrees of freedom subjected to a unilateral constraint with dry friction and delay effects (with maximal duration ). At the contact point, we characterize the friction by a Coulomb law associated with a friction cone. Starting from a formulation of the problem that was given by Jean-Jacques Moreau in the form of a second-order differential inclusion in the sense of measures, we consider a sweeping process algorithm that converges towards a solution to the dynamical contact problem. The mathematical machinery as well as the general plan of the existence proof may seem much too heavy in order to treat just this simple case, but they have proved useful in more complex settings.
Nous nous intéressons au mouvement d'un système mécanique ayant un nombre fini de degrés de liberté soumis à une contrainte unilatérale avec frottement sec et des forces qui peuvent dépendre de l'histoire du mouvement avec facteur de retard τ. Au contact, nous caractérisons le frottement par une loi de Coulomb associée à un cône de frottement, en suivant la formulation du problème proposée par Jean-Jacques Moreau sous la forme d'une inclusion différentielle du second ordre au sens des mesures (la réaction et l'accéleration pouvant être des mesures). Un algorithme de type « sweeping process » permet de montrer l'existence d'une suite qui converge vers une solution du problème de contact dynamique. L'outillage mathématique ainsi que la démarche de la preuve semblent trop lourds pour traiter ce problème plutôt simple, mais les deux peuvent être utiles dans des cadres plus complexes.
Accepted:
Published online:
Mot clés : Contact avec frottement et retard, Méthodes numériques, Sweeping process
Manuel D.P. Monteiro Marques 1; Raoul Dzonou 2
@article{CRMECA_2018__346_3_237_0, author = {Manuel D.P. Monteiro Marques and Raoul Dzonou}, title = {Dynamics of a particle with friction and delay}, journal = {Comptes Rendus. M\'ecanique}, pages = {237--246}, publisher = {Elsevier}, volume = {346}, number = {3}, year = {2018}, doi = {10.1016/j.crme.2017.12.008}, language = {en}, }
Manuel D.P. Monteiro Marques; Raoul Dzonou. Dynamics of a particle with friction and delay. Comptes Rendus. Mécanique, Volume 346 (2018) no. 3, pp. 237-246. doi : 10.1016/j.crme.2017.12.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.12.008/
[1] Une formulation du contact à frottement sec; application au calcul numérique, C. R. Acad. Sci. Paris, Ser. II, Volume 302 (1986), pp. 799-801
[2] Inclusões diferenciais e choques inelásticos, Universidade de Lisboa, Lisbon, 1988 (Ph.D. thesis)
[3] Differential Inclusions in Non-Smooth Mechanical Problems: Shocks and Dry Friction, Birkhauser, 1993
[4] Questioni di regolarità e di unicità del moto in presenza di vincoli olonomi unilaterali, Rend. Semin. Mat. Univ. Padova, Volume 29 (1959), pp. 271-315
[5] A class of non linear differential equations of second order in time, Nonlinear Anal., Volume 2 (1978), pp. 355-378
[6] A unified variational model for the dynamics of perfect unilateral constraints, Eur. J. Mech. A, Solids, Volume 17 (1998), pp. 819-842
[7] Convergence des schémas numériques pour des problèmes d'impact, Université Jean-Monnet, Saint-Étienne, France, 2007 (thèse de doctorat)
[8] A convergence result for a vibro-impact problem with a general inertial operator, J. Nonlinear Dyn., Volume 58 (2009), pp. 361-384
[9] Quelques questions d'analyse et géométrie posées par la mécanique des milieux continus, USTL, Montpellier, France, 1983 (thèse de troisième cycle)
[10] Vibro-impact problems with dry friction – Part I: existence result, SIAM J. Math. Anal., Volume 47 (2015), pp. 3285-3313
[11] Vibro-impact problems with dry friction – Part II: tangential contacts and frictional catastrophes, SIAM J. Math. Anal., Volume 48 (2016), pp. 1272-1296
[12] Multibody dynamics with unilateral constraints and dry friction: how the contact dynamics approach may handle Coulomb's law indeterminacies?, J. Convex Anal., Volume 23 (2016), pp. 849-876
[13] A numerical scheme for impact problem II. The multidimensional case, SIAM J. Numer. Anal., Volume 40 (2002), pp. 734-768
[14] Penalty approximation of Painlevé problem (P. Alart; O. Maisonneuve; R.T. Rockafellar, eds.), Nonsmooth Mechanics and Analysis, Springer, 2006, pp. 129-143
[15] Nonsmooth Mechanics. Models, Dynamics and Control, Comm. Control Engrg. Ser., Springer, 2016
[16] An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction, Int. J. Numer. Methods Eng., Volume 39 (1996), pp. 2673-2691
[17] Convergence of a time-stepping scheme for rigid body dynamics and resolution of Painlevé's paradoxes, Arch. Ration. Mech. Anal., Volume 145 (1998), pp. 215-260
[18] Dynamics with Inequalities. Impacts and Hard Constraints, Society for Industrial and Applied Mathematics (SIAM), 2011
[19] The dynamics of discrete mechanical systems with perfect unilateral constraints, Arch. Ration. Mech. Anal., Volume 154 (2000), pp. 199-274
[20] Existence and uniqueness of solutions to dynamical unilateral contact problems with Coulomb friction: the case of a collection of points, Modél. Math. Anal. Numér., Volume 48 (2014), pp. 1-25
Cited by Sources:
Comments - Policy