In the end of the seventies, Schatzman and Moreau undertook to revisit the venerable dynamics of rigid bodies with contact and dry friction in the light of more recent mathematics. One claimed objective was to reach, for the first time, a mathematically consistent formulation of an initial value problem associated with the dynamics. The purpose of this article is to make a review of the today state-of-art concerning not only the formulation, but also the issues of existence and uniqueness of solution.
À la fin des années 70, Schatzman et Moreau entreprirent de reformuler l'antique dynamique des solides rigides en présence de contact et frottement sec à la lumière de mathématiques plus récentes. Un des objectifs revendiqués était de parvenir, pour la première fois, à la formulation d'un problème d'évolution à partir d'une condition initiale, qui soit mathématiquement cohérent. Le but de cet article est de brosser un état de l'art actuel, concernant non seulement les questions de formulation, mais également d'existence et d'unicité de solution.
Accepted:
Published online:
Mot clés : Dynamique, Solide rigide, Système discret, Impact, Frottement, Contact, Existence, Unicité
Patrick Ballard 1; Alexandre Charles 2
@article{CRMECA_2018__346_3_222_0, author = {Patrick Ballard and Alexandre Charles}, title = {An overview of the formulation, existence and uniqueness issues for the initial value problem raised by the dynamics of discrete systems with unilateral contact and dry friction}, journal = {Comptes Rendus. M\'ecanique}, pages = {222--236}, publisher = {Elsevier}, volume = {346}, number = {3}, year = {2018}, doi = {10.1016/j.crme.2017.12.010}, language = {en}, }
TY - JOUR AU - Patrick Ballard AU - Alexandre Charles TI - An overview of the formulation, existence and uniqueness issues for the initial value problem raised by the dynamics of discrete systems with unilateral contact and dry friction JO - Comptes Rendus. Mécanique PY - 2018 SP - 222 EP - 236 VL - 346 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2017.12.010 LA - en ID - CRMECA_2018__346_3_222_0 ER -
%0 Journal Article %A Patrick Ballard %A Alexandre Charles %T An overview of the formulation, existence and uniqueness issues for the initial value problem raised by the dynamics of discrete systems with unilateral contact and dry friction %J Comptes Rendus. Mécanique %D 2018 %P 222-236 %V 346 %N 3 %I Elsevier %R 10.1016/j.crme.2017.12.010 %G en %F CRMECA_2018__346_3_222_0
Patrick Ballard; Alexandre Charles. An overview of the formulation, existence and uniqueness issues for the initial value problem raised by the dynamics of discrete systems with unilateral contact and dry friction. Comptes Rendus. Mécanique, Volume 346 (2018) no. 3, pp. 222-236. doi : 10.1016/j.crme.2017.12.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.12.010/
[1] A class of nonlinear differential equations of second order in time, Nonlinear Anal., Volume 2 (1978) no. 2, pp. 355-373
[2] Standard inelastic shocks and the dynamics of unilateral constraints (G. Del Piero; F. Maceri, eds.), Unilateral Problems in Structural Analysis, Springer-Verlag, Wien, New York, 1983, pp. 173-221
[3] Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d'énergie, Math. Model. Numer. Anal., Volume 27 (1993) no. 6, pp. 673-717
[4] Differential Inclusions in Nonsmooth Mechanical Problems — Shocks and Dry Friction, Progress in Nonlinear Differential Equations and Their Applications, vol. 9, Birkhäuser, Basel, Boston, Berlin, 1993
[5] Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints. I and II, Arch. Ration. Mech. Anal., Volume 198 (2010), pp. 457-503 (505–568)
[6] A proximal-like algorithm for vibro-impact problems with a non smooth set of constraints, J. Differ. Equ., Volume 250 (2011), pp. 476-514
[7] Uniqueness in the elastic bounce problem, I, J. Differ. Equ., Volume 2 (1985) no. 2, pp. 206-215
[8] Uniqueness in the elastic bounce problem, II, J. Differ. Equ., Volume 90 (1991), pp. 304-315
[9] The dynamics of discrete mechanical systems with perfect unilateral constraints, Arch. Ration. Mech. Anal., Volume 154 (2000), pp. 199-274
[10] Dynamics of rigid bodies systems with unilateral or frictional constraints (D.Y. Gao; R. Ogden, eds.), Advances in Mechanics and Mathematics, vol. 1, Kluwer Academic Publishers, 2002, pp. 3-88 (chap. 1)
[11] Existence and uniqueness for dynamical unilateral contact with Coulomb friction: a model problem, Math. Model. Numer. Anal., Volume 39 (2005), pp. 59-77
[12] Existence and uniqueness of solutions to dynamical unilateral contact problems with Coulomb friction: the case of a collection of points, Math. Model. Numer. Anal., Volume 48 (2014) no. 1, pp. 1-25
[13] Convergence of a time-stepping scheme for rigid-body dynamics and resolution of Painlevé's problem, Arch. Ration. Mech. Anal., Volume 145 (1998), pp. 215-260
[14] The formulation of dynamical contact problems with friction in the case of systems of rigid bodies and general discrete mechanical systems—Painlevé and Kane paradoxes revisited, Z. Angew. Math. Phys. (2016), pp. 67-99
[15] Incompatibilità dei Teoremi di Esistenza e di Unicità del Moto per un Tipo molto Comune e Regolare di Sistemi Meccanici, Ann. Sc. Norm. Super. Pisa (3), Volume XIV (1960), pp. 333-348
[16] Continuous dependence on data for vibro-impact problems, Math. Models Methods Appl. Sci., Volume 15 (2005) no. 1, pp. 53-93
[17] The non-smooth contact dynamics method, Comput. Methods Appl. Mech. Eng., Volume 177 (1999), pp. 235-257
[18] Rigid-body dynamics with friction and impact, SIAM Rev., Volume 42 (2000) no. 1, pp. 3-39
[19] Sur les lois du frottement de glissement, C. r. hebd. Séances Acad. Sci. Paris, Volume 121 (1895), pp. 112-115
[20] Sur la loi de Coulomb, C. r. hebd. Séances Acad. Sci. Paris, Volume 140 (1905), pp. 847-848
[21] Unilateral contact and dry friction in finite freedom dynamics (J.-J. Moreau; P.D. Panagiotopoulos, eds.), Non-smooth Mechanics and Applications, Springer-Verlag, Wien, New York, 1988, pp. 1-82
[22] A dynamics puzzle, Stanf. Mech. Alumni Club Newsl. (1983), p. 6
[23] Dynamics: Theory and Applications, McGraw-Hill, New York, 1985
Cited by Sources:
Comments - Policy