The aim of this paper is to present a general convexification recipe that can be useful for studying non-convex variational problems. In particular, this allows us to treat such problems by using a powerful primal–dual scheme. Possible further developments and open issues are given.
Nous présentons un principe général de convexification permettant de traiter certains problèmes variationnels non convexes. Ce principe permet de mettre en œuvre les puissantes techniques de dualité en ramenant de tels problèmes à des formulation de type primal–dual. Quelques perspectives et problèmes ouverts sont évoqués.
Accepted:
Published online:
Mot clés : Optimisation non convexe, Principe de min–max, Frontière libre, Discontinuités libres, Γ-convergence
Guy Bouchitté 1; Minh Phan 1
@article{CRMECA_2018__346_3_206_0, author = {Guy Bouchitt\'e and Minh Phan}, title = {A duality recipe for non-convex variational problems}, journal = {Comptes Rendus. M\'ecanique}, pages = {206--221}, publisher = {Elsevier}, volume = {346}, number = {3}, year = {2018}, doi = {10.1016/j.crme.2017.12.011}, language = {en}, }
Guy Bouchitté; Minh Phan. A duality recipe for non-convex variational problems. Comptes Rendus. Mécanique, Volume 346 (2018) no. 3, pp. 206-221. doi : 10.1016/j.crme.2017.12.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.12.011/
[1] Fonctionnelles convexes, Séminaire sur les équations aux dérivés partielles, vol. 2, Collège de France, Paris, France, 1966
[2] Convex Analysis, Princeton Math. Ser., vol. 28, 1970
[3] Plasticité et homogénéisation, Pitman Res. Notes Math. Ser., Université Paris-6, 1982
[4] Sur les équations de la plasticité : existence et régularité des solutions, J. Méc., Volume 20 (1981) no. 1, pp. 3-39
[5] Topics in Optimal Transportation, Grad. Stud. Math., vol. 58, American Mathematical Society, 2003
[6] Variational Convergence for Functions and Operators, Appl. Math. Ser., Pitman, 1984
[7] An Introduction to Γ-Convergence, Birkhäuser, Boston, MA, USA, 1993
[8] The calibration method for the Mumford–Shah functional and free-discontinuity problems, Calc. Var. Partial Differ. Equ., Volume 16 (2003), pp. 299-333
[9] Convex representation for lower semicontinuous envelopes of functionals in , J. Convex Anal., Volume 8 (2001) no. 1, pp. 149-170
[10] Duality for non-convex variational problems, C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015) no. 4, pp. 375-379
[11] A duality theory for non-convex variational problems (Arch. Ration. Mech. Anal., submitted for publication) | arXiv
[12] Semicontinuity, Relaxation, and Integral Representation in the Calculus of Variations, Pitman Res. Notes Math. Ser., Longman Scientific, Harlow, UK, 1989
[13] Probabilités et potentiel, Hermann, Paris, 1975 (Chaps I–IV)
[14] Un espace fonctionnel pour les équations de la plasticité, Ann. Fac. Sci. Toulouse Math., Volume 5 (1979) no. 1, pp. 77-87
[15] A semi-implicit scheme based on Arrow–Hurwicz method for saddle point problems (submitted for publication, Arxiv:) | arXiv
[16] Equi-coercivity of variational problems: the role of recession functions, Collège de France Seminar, vol. XII, Pitman Res. Notes Math. Ser., vol. 302, 1991, pp. 31-54
[17] Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., Volume 325 (1981), pp. 105-144
[18] Singular perturbations of variational problems arising from a two-phase transition model, Appl. Math. Optim., Volume 21 (1990) no. 3, pp. 289-314
[19] The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal., Volume 98 (1987) no. 2, pp. 123-142
[20] Integral representation and relaxation of convex local functionals on , Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 20 (1993), pp. 483-533
[21] T. Pock, D. Cremers, H. Bischof, A. Chambolle, An algorithm for minimizing the Mumford–Shah functional, in: IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 27 September–4 October 2009.
Cited by Sources:
Comments - Politique