Comptes Rendus
The legacy of Jean-Jacques Moreau in mechanics
A duality recipe for non-convex variational problems
Comptes Rendus. Mécanique, Volume 346 (2018) no. 3, pp. 206-221.

The aim of this paper is to present a general convexification recipe that can be useful for studying non-convex variational problems. In particular, this allows us to treat such problems by using a powerful primal–dual scheme. Possible further developments and open issues are given.

Nous présentons un principe général de convexification permettant de traiter certains problèmes variationnels non convexes. Ce principe permet de mettre en œuvre les puissantes techniques de dualité en ramenant de tels problèmes à des formulation de type primal–dual. Quelques perspectives et problèmes ouverts sont évoqués.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2017.12.011
Keywords: Non-convex optimization, Min–Max principle, Free boundary, Free discontinuities, Γ-convergence
Mot clés : Optimisation non convexe, Principe de min–max, Frontière libre, Discontinuités libres, Γ-convergence

Guy Bouchitté 1; Minh Phan 1

1 Institut de mathématiques, Université de Toulon, 83957 La Garde cedex, France
@article{CRMECA_2018__346_3_206_0,
     author = {Guy Bouchitt\'e and Minh Phan},
     title = {A duality recipe for non-convex variational problems},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {206--221},
     publisher = {Elsevier},
     volume = {346},
     number = {3},
     year = {2018},
     doi = {10.1016/j.crme.2017.12.011},
     language = {en},
}
TY  - JOUR
AU  - Guy Bouchitté
AU  - Minh Phan
TI  - A duality recipe for non-convex variational problems
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 206
EP  - 221
VL  - 346
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2017.12.011
LA  - en
ID  - CRMECA_2018__346_3_206_0
ER  - 
%0 Journal Article
%A Guy Bouchitté
%A Minh Phan
%T A duality recipe for non-convex variational problems
%J Comptes Rendus. Mécanique
%D 2018
%P 206-221
%V 346
%N 3
%I Elsevier
%R 10.1016/j.crme.2017.12.011
%G en
%F CRMECA_2018__346_3_206_0
Guy Bouchitté; Minh Phan. A duality recipe for non-convex variational problems. Comptes Rendus. Mécanique, Volume 346 (2018) no. 3, pp. 206-221. doi : 10.1016/j.crme.2017.12.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.12.011/

[1] J.J. Moreau Fonctionnelles convexes, Séminaire sur les équations aux dérivés partielles, vol. 2, Collège de France, Paris, France, 1966

[2] R. Tyrrell; A. Rockafellar Convex Analysis, Princeton Math. Ser., vol. 28, 1970

[3] P.M. Suquet Plasticité et homogénéisation, Pitman Res. Notes Math. Ser., Université Paris-6, 1982

[4] P.M. Suquet Sur les équations de la plasticité : existence et régularité des solutions, J. Méc., Volume 20 (1981) no. 1, pp. 3-39

[5] C. Villani Topics in Optimal Transportation, Grad. Stud. Math., vol. 58, American Mathematical Society, 2003

[6] H. Attouch Variational Convergence for Functions and Operators, Appl. Math. Ser., Pitman, 1984

[7] G. Dal Maso An Introduction to Γ-Convergence, Birkhäuser, Boston, MA, USA, 1993

[8] G. Alberti; G. Bouchitté; G. Dal Maso The calibration method for the Mumford–Shah functional and free-discontinuity problems, Calc. Var. Partial Differ. Equ., Volume 16 (2003), pp. 299-333

[9] A. Chambolle Convex representation for lower semicontinuous envelopes of functionals in L1, J. Convex Anal., Volume 8 (2001) no. 1, pp. 149-170

[10] G. Bouchitté; I. Fragalà Duality for non-convex variational problems, C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015) no. 4, pp. 375-379

[11] G. Bouchitté; I. Fragalà A duality theory for non-convex variational problems (Arch. Ration. Mech. Anal., submitted for publication) | arXiv

[12] G. Buttazzo Semicontinuity, Relaxation, and Integral Representation in the Calculus of Variations, Pitman Res. Notes Math. Ser., Longman Scientific, Harlow, UK, 1989

[13] C. Dellacherie; P.A. Meyer Probabilités et potentiel, Hermann, Paris, 1975 (Chaps I–IV)

[14] P.M. Suquet Un espace fonctionnel pour les équations de la plasticité, Ann. Fac. Sci. Toulouse Math., Volume 5 (1979) no. 1, pp. 77-87

[15] C. Galusinski; M. Phan A semi-implicit scheme based on Arrow–Hurwicz method for saddle point problems (submitted for publication, Arxiv:) | arXiv

[16] G. Bouchitté; P.M. Suquet Equi-coercivity of variational problems: the role of recession functions, Collège de France Seminar, vol. XII, Pitman Res. Notes Math. Ser., vol. 302, 1991, pp. 31-54

[17] H.W. Alt; L.A. Caffarelli Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., Volume 325 (1981), pp. 105-144

[18] G. Bouchitté Singular perturbations of variational problems arising from a two-phase transition model, Appl. Math. Optim., Volume 21 (1990) no. 3, pp. 289-314

[19] L. Modica The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal., Volume 98 (1987) no. 2, pp. 123-142

[20] G. Bouchitté; G. Dal Maso Integral representation and relaxation of convex local functionals on BV(Ω), Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 20 (1993), pp. 483-533

[21] T. Pock, D. Cremers, H. Bischof, A. Chambolle, An algorithm for minimizing the Mumford–Shah functional, in: IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 27 September–4 October 2009.

Cited by Sources:

Comments - Politique