Comptes Rendus
The legacy of Jean-Jacques Moreau in mechanics
Recovering convexity in non-associated plasticity
Comptes Rendus. Mécanique, Volume 346 (2018) no. 3, pp. 198-205.

We quickly review two main non-associated plasticity models, the Armstrong–Frederick model of nonlinear kinematic hardening and the Drucker–Prager cap model. Non-associativity is commonly thought to preclude any kind of variational formulation, be it in a Hencky-type (static) setting, or when considering a quasi-static evolution because non-associativity destroys convexity. We demonstrate that such an opinion is misguided: associativity (and convexity) can be restored at the expense of the introduction of state variable-dependent dissipation potentials.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2017.12.005
Keywords: Elasto-plasticity, Non-associated flow rules, Quasi-static evolution, Convex analysis

Gilles A. Francfort 1, 2

1 Université Paris-Nord, LAGA, avenue Jean-Baptiste-Clément, 93430 Villetaneuse, France
2 Courant Institute, New York University, 251 Mercer Street, New York, NY 10012, USA
@article{CRMECA_2018__346_3_198_0,
     author = {Gilles A. Francfort},
     title = {Recovering convexity in non-associated plasticity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {198--205},
     publisher = {Elsevier},
     volume = {346},
     number = {3},
     year = {2018},
     doi = {10.1016/j.crme.2017.12.005},
     language = {en},
}
TY  - JOUR
AU  - Gilles A. Francfort
TI  - Recovering convexity in non-associated plasticity
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 198
EP  - 205
VL  - 346
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2017.12.005
LA  - en
ID  - CRMECA_2018__346_3_198_0
ER  - 
%0 Journal Article
%A Gilles A. Francfort
%T Recovering convexity in non-associated plasticity
%J Comptes Rendus. Mécanique
%D 2018
%P 198-205
%V 346
%N 3
%I Elsevier
%R 10.1016/j.crme.2017.12.005
%G en
%F CRMECA_2018__346_3_198_0
Gilles A. Francfort. Recovering convexity in non-associated plasticity. Comptes Rendus. Mécanique, Volume 346 (2018) no. 3, pp. 198-205. doi : 10.1016/j.crme.2017.12.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.12.005/

[1] G.A. Francfort; A. Giacomini Small-strain heterogeneous elastoplasticity revisited, Commun. Pure Appl. Math., Volume 65 (2012) no. 9, pp. 1185-1241

[2] J.-L. Chaboche Time independent constitutive theories for cyclic plasticity, Int. J. Plast., Volume 2 (1986) no. 2, pp. 149-188

[3] C.O. Frederick; P.J. Armstrong A mathematical representation of the multiaxial Bauschinger effect, Mat. High Temp., Volume 24 (2007) no. 1, pp. 1-26

[4] J.-L. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plast., Volume 5 (1989) no. 3, pp. 247-302

[5] P.A. Vermeer; R. De Borst Non-Associated Plasticity for Soils, Concrete and Rock, Stevin-Laboratory of the Department of Civil Engineering, Delft University of Technology, Delft, The Netherlands, 1984

[6] L. Resende; J.B. Martin Formulation of Drucker–Prager Cap model, J. Eng. Mech., Volume 111 (1985) no. 7, pp. 855-881

[7] L. Resende; J.B. Martin Closure to “Formulation of Drucker–Prager Cap model” by L. Resende and J.B. Martin (J. Eng. Mech. 111 (7) (1985)), J. Eng. Mech., Volume 113 (1987) no. 8, pp. 1257-1259

[8] A.A. Ilyushin On a plasticity postulate, Prikl. Mat. Meh., Volume 25 (1961), pp. 503-507

[9] J.-J. Marigo From Clausius–Duhem and Drucker–Ilyushin inequalities to standard materials, Continuum Thermomechanics, Springer, 2000, pp. 289-300

[10] G. Dal Maso; A. De Simone; M.G. Mora Quasistatic evolution problems for linearly elastic–perfectly plastic materials, Arch. Ration. Mech. Anal., Volume 180 (2006) no. 2, pp. 237-291

[11] G. Dal Maso; A. De Simone; F. Solombrino Quasistatic evolution for Cam–Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling, Calc. Var. Partial Differ. Equ., Volume 40 (2011) no. 1–2, pp. 125-181

[12] J.-F. Babadjian; G.A. Francfort; M.G. Mora Quasi-static evolution in nonassociative plasticity: the cap model, SIAM J. Math. Anal., Volume 44 (2012) no. 1, pp. 245-292

[13] G.A. Francfort; U. Stefanelli Quasi-static evolution for the Armstrong–Frederick hardening-plasticity model, Appl. Math. Res. Express, Volume 2013 (2013) no. 2, pp. 297-344

[14] G. Dal Maso; A. De Simone Quasistatic evolution for Cam–Clay plasticity: examples of spatially homogeneous solutions, Math. Models Methods Appl. Sci., Volume 19 (2009) no. 09, pp. 1643-1711

[15] G. Dal Maso; A. De Simone; F. Solombrino Quasistatic evolution for Cam–Clay plasticity: properties of the viscosity solution, Calc. Var. Partial Differ. Equ., Volume 44 (2012) no. 3–4, pp. 495-541

[16] P. Germain; Q.S. Nguyen; P. Suquet Continuum thermodynamics, J. Appl. Mech., Volume 105 (1983), pp. 1010-1020

[17] J. Lubliner Plasticity Theory, Macmillan Publishing, New York, 1990

[18] R. Tyrrell Rockafellar Convex Analysis, Princeton Math. Ser., vol. 50, 1970

[19] F.L. Di Maggio; I.S. Sandler Material model for granular soils, J. Eng. Mech., Volume 97 (1971), pp. 935-950

[20] M.C. Delfour; J.-P. Zolésio Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, Society for Industrial and Applied Mathematics, 2011

[21] P. Laborde Analysis of the strain-stress relation in plasticity with non-associated laws, Int. J. Eng. Sci., Volume 25 (1987) no. 6, pp. 655-666

[22] P. Laborde A nonmonotone differential inclusion, Nonlinear Anal., Theory Methods Appl., Volume 11 (1987) no. 7, pp. 757-776

Cited by Sources:

Comments - Policy