A mathematical study via variational convergence of a periodic distribution of classical linearly elastic thin plates softly abutted together shows that it is not necessary to use a different continuum model nor to make constitutive symmetry hypothesis as starting points to deduce the Reissner–Mindlin plate model.
Accepted:
Published online:
Christian Licht 1, 2, 3; Thibaut Weller 1
@article{CRMECA_2018__346_6_432_0, author = {Christian Licht and Thibaut Weller}, title = {An asymptotic {Reissner{\textendash}Mindlin} plate model}, journal = {Comptes Rendus. M\'ecanique}, pages = {432--438}, publisher = {Elsevier}, volume = {346}, number = {6}, year = {2018}, doi = {10.1016/j.crme.2018.04.014}, language = {en}, }
Christian Licht; Thibaut Weller. An asymptotic Reissner–Mindlin plate model. Comptes Rendus. Mécanique, Volume 346 (2018) no. 6, pp. 432-438. doi : 10.1016/j.crme.2018.04.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.04.014/
[1] On the theory of bending of elastic plates, J. Math. Phys., Volume 23 (1945), pp. 184-191
[2] The effect of transverse shear deformations on the bending of elastic plates, J. Appl. Mech., Volume 12 (1945), p. A69-A77
[3] Influence of rotary inertia and shear on flexural motions of isotropic elastic plate, J. Appl. Mech., Volume 18 (1951), pp. 31-38
[4] On the range of applicability of the Reissner–Mindlin and Kirchhoff–Love plate bending models, J. Elast., Volume 67 (2002), pp. 171-185
[5] Mathematical Elasticity, vol. II: Theory of Plates, North-Holland, Elsevier, 1997
[6] Nonlinear boundary conditions in Kirchhoff–Love plate theory, J. Elast., Volume 96 (2009), pp. 57-79
[7] A justification of the Reissner–Mindlin plate theory through variational convergence, Anal. Appl., Volume 5 (2007), pp. 165-182
[8] An asymptotic strain gradient Reissner–Mindlin plate model, Meccanica, Volume 48 (2013), pp. 2007-2018
[9] The Reissner–Mindlin plate is the Γ-limit of Cosserat elasticity, Math. Models Methods Appl. Sci., Volume 20 (2010), pp. 1553-1590
[10] Asymptotic modeling of assemblies of thin linearly elastic plates, C. R. Mecanique, Volume 335 (2007), pp. 775-780
[11] Problèmes Mathématiques en Plasticité, Gauthier-Villars, Paris, 1983
[12] Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, MPS–SIAM Series on Optimization, vol. 6, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2005
[13] Dynamics of elastic bodies connected by a thin soft viscoelastic layer, J. Math. Pures Appl., Volume 99 (2013), pp. 685-703
[14] A modelling of elastic adhesive bonded joints, Adv. Math. Sci. Appl., Volume 7 (1997), pp. 711-740
[15] A homogenized Reissner–Mindlin model for orthotropic periodic plates: application to brickwork panels, Int. J. Solids Struct., Volume 44 (2007), pp. 6055-6079
Cited by Sources:
Comments - Politique