Comptes Rendus
Hybrid continuum–coarse-grained modeling of erythrocytes
Comptes Rendus. Mécanique, Volume 346 (2018) no. 6, pp. 439-448.

The red blood cell (RBC) membrane is a composite structure, consisting of a phospholipid bilayer and an underlying membrane-associated cytoskeleton. Both continuum and particle-based coarse-grained RBC models make use of a set of vertices connected by edges to represent the RBC membrane, which can be seen as a triangular surface mesh for the former and a spring network for the latter. Here, we present a modeling approach combining an existing continuum vesicle model with a coarse-grained model for the cytoskeleton. Compared to other two-component approaches, our method relies on only one mesh, representing the cytoskeleton, whose velocity in the tangential direction of the membrane may be different from that of the lipid bilayer. The finitely extensible nonlinear elastic (FENE) spring force law in combination with a repulsive force defined as a power function (POW), called FENE–POW, is used to describe the elastic properties of the RBC membrane. The mechanical interaction between the lipid bilayer and the cytoskeleton is explicitly computed and incorporated into the vesicle model. Our model includes the fundamental mechanical properties of the RBC membrane, namely fluidity and bending rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining surface-area and volume conservation constraint. We present three simulation examples to demonstrate the effectiveness of this hybrid continuum–coarse-grained model for the study of RBCs in fluid flows.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.04.015
Keywords: Lipid membrane, Vesicle dynamics, Red blood cell, Boundary element method, Stokes flow

Jinming Lyu 1; Paul G. Chen 1; Gwenn Boedec 2; Marc Leonetti 3; Marc Jaeger 1

1 Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France
2 Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, Marseille, France
3 Université Grenoble Alpes, CNRS, LRP, Grenoble, France
@article{CRMECA_2018__346_6_439_0,
     author = {Jinming Lyu and Paul G. Chen and Gwenn Boedec and Marc Leonetti and Marc Jaeger},
     title = {Hybrid continuum{\textendash}coarse-grained modeling of erythrocytes},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {439--448},
     publisher = {Elsevier},
     volume = {346},
     number = {6},
     year = {2018},
     doi = {10.1016/j.crme.2018.04.015},
     language = {en},
}
TY  - JOUR
AU  - Jinming Lyu
AU  - Paul G. Chen
AU  - Gwenn Boedec
AU  - Marc Leonetti
AU  - Marc Jaeger
TI  - Hybrid continuum–coarse-grained modeling of erythrocytes
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 439
EP  - 448
VL  - 346
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2018.04.015
LA  - en
ID  - CRMECA_2018__346_6_439_0
ER  - 
%0 Journal Article
%A Jinming Lyu
%A Paul G. Chen
%A Gwenn Boedec
%A Marc Leonetti
%A Marc Jaeger
%T Hybrid continuum–coarse-grained modeling of erythrocytes
%J Comptes Rendus. Mécanique
%D 2018
%P 439-448
%V 346
%N 6
%I Elsevier
%R 10.1016/j.crme.2018.04.015
%G en
%F CRMECA_2018__346_6_439_0
Jinming Lyu; Paul G. Chen; Gwenn Boedec; Marc Leonetti; Marc Jaeger. Hybrid continuum–coarse-grained modeling of erythrocytes. Comptes Rendus. Mécanique, Volume 346 (2018) no. 6, pp. 439-448. doi : 10.1016/j.crme.2018.04.015. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.04.015/

[1] P.M. Vlahovska; T. Podgorski; C. Misbah Vesicles and red blood cells in flow: from individual dynamics to rheology, C. R. Physique, Volume 10 (2009), pp. 775-789

[2] P.M. Vlahovska; D. Barthes-Biesel; C. Misbah Flow dynamics of red blood cells and their biomimetic counterparts, C. R. Physique, Volume 14 (2013), pp. 415-459

[3] X. Li; P.M. Vlahovska; G.E. Karniadakis Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease, Soft Matter, Volume 9 (2013), pp. 28-37

[4] J.B. Freund Numerical simulation of flowing blood cells, Annu. Rev. Fluid Mech., Volume 46 (2014), pp. 67-95

[5] D.A. Fedosov; B. Caswell; G.E. Karniadakis Systematic coarse-graining of spectrin-level red blood cell models, Comput. Methods Appl. Mech. Eng., Volume 199 (2010), pp. 1937-1948

[6] J. Li; M. Dao; C.T. Lim; S. Suresh Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte, Biophys. J., Volume 88 (2005), pp. 3707-3719

[7] H. Noguchi; G. Gompper Shape transitions of fluid vesicles and red blood cells in capillary flows, Proc. Natl. Acad. Sci. USA, Volume 102 (2005), pp. 14159-14164

[8] X. Li; Z. Peng; H. Lei; M. Dao; G.E. Karniadakis Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model, Philos. Trans. R. Soc. Lond. A, Volume 372 (2014)

[9] G. Boedec; M. Leonetti; M. Jaeger 3D vesicle dynamics simulations with a linearly triangulated surface, J. Comput. Phys., Volume 230 (2011), pp. 1020-1034

[10] R. Trozzo; G. Boedec; M. Leonetti; M. Jaeger Axisymmetric boundary element method for vesicles in a capillary, J. Comput. Phys., Volume 289 (2015), pp. 62-82

[11] Z. Peng; R.J. Asaro; Q. Zhu Multiscale modeling of erythrocytes in Stokes flow, J. Fluid Mech., Volume 686 (2011), pp. 299-337

[12] G. Boedec; M. Jaeger; M. Leonetti Settling of a vesicle in the limit of quasispherical shapes, J. Fluid Mech., Volume 690 (2012), pp. 227-261

[13] S. Suresh; J. Spatz; J.P. Mills; A. Micoulet; M. Dao; C.T. Lim; M. Beil; T. Seufferlein Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria, Acta Biomater., Volume 1 (2005), pp. 15-30

[14] E.A. Evans; R. Skalak Mechanics and Thermodynamics of Biomembranes, CRC Press Inc., Boca Raton, FL, USA, 1980

Cited by Sources:

Comments - Policy