Comptes Rendus
Computational modeling of material forming processes / Simulation numérique des procédés de mise en forme
On the identification of a high-resolution multi-linear post-necking strain hardening model
Comptes Rendus. Mécanique, Volume 346 (2018) no. 8, pp. 712-723.

The Finite Element Model Updating (FEMU) technique is an inverse method that enables to arrive at a complete solution to the problem of diffuse necking of a thick tensile specimen. Conventionally, FEMU relies on the identification of a phenomenological strain hardening law that inherently limits the accuracy of the method due to the predefined character of the adopted strain hardening law. A high-resolution multi-linear post-necking strain hardening model enables to describe more generically the actual strain hardening behaviour. A numerical concept study is used to scrutinise the identification of such a model using FEMU. It is shown that, unlike progressive identification strategies, a global identification strategy followed by a smoothing operation based on area conservation yields sufficiently accurate results. To study the experimental feasibility, the latter strategy is used to identify the post-necking strain hardening behaviour of a thick S690QL high-strength steel. To this purpose, a notched tensile specimen was loaded up to fracture, while the elongation was measured using Digital Image Correlation (DIC). It is shown that the global identification strategy suffers from experimental noise associated with DIC and the load signal.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.06.002
Keywords: FEMU, Post-necking, Strain hardening, Stereo-DIC, S690QL

Kristof Denys 1; Sam Coppieters 1; Dimitri Debruyne 1

1 Department of Materials Engineering, KU Leuven, Campus Ghent, Gebroeders De Smetstraat 1, B-9000 Gent, Belgium
@article{CRMECA_2018__346_8_712_0,
     author = {Kristof Denys and Sam Coppieters and Dimitri Debruyne},
     title = {On the identification of a high-resolution multi-linear post-necking strain hardening model},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {712--723},
     publisher = {Elsevier},
     volume = {346},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crme.2018.06.002},
     language = {en},
}
TY  - JOUR
AU  - Kristof Denys
AU  - Sam Coppieters
AU  - Dimitri Debruyne
TI  - On the identification of a high-resolution multi-linear post-necking strain hardening model
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 712
EP  - 723
VL  - 346
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2018.06.002
LA  - en
ID  - CRMECA_2018__346_8_712_0
ER  - 
%0 Journal Article
%A Kristof Denys
%A Sam Coppieters
%A Dimitri Debruyne
%T On the identification of a high-resolution multi-linear post-necking strain hardening model
%J Comptes Rendus. Mécanique
%D 2018
%P 712-723
%V 346
%N 8
%I Elsevier
%R 10.1016/j.crme.2018.06.002
%G en
%F CRMECA_2018__346_8_712_0
Kristof Denys; Sam Coppieters; Dimitri Debruyne. On the identification of a high-resolution multi-linear post-necking strain hardening model. Comptes Rendus. Mécanique, Volume 346 (2018) no. 8, pp. 712-723. doi : 10.1016/j.crme.2018.06.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.06.002/

[1] R. Ghajar; G. Mirone; A. Keshavarz Ductile failure of X100 pipeline steel – experiments and fractography, Mater. Des., Volume 43 (2013), pp. 513-525

[2] C.-K. Oh; Y.-J. Kim; J.-H. Baek; Y.-P. Kim; W. Kim A phenomenological model of ductile fracture for API X65 steel, Int. J. Mech. Sci., Volume 49 (2007), pp. 1399-1412

[3] W. Guo; H. Dong; M. Lu; X. Zhao The coupled effects of thickness and delamination on cracking resistance of X70 pipeline steel, Int. J. Press. Vessels Piping, Volume 79 (2002), pp. 403-412

[4] J. Lian; M. Sharaf; F. Archie; S. Münstermann A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets, Int. J. Damage Mech., Volume 22 (2012), pp. 188-218

[5] Y. Korkolis; B. Brownell; S. Coppieters; T. Haobin Modeling of hole-expansion of aa6022-t4 aluminum sheets with anisotropic non-quadratic yield functions, J. Phys. Conf. Ser., Volume 734 (2016)

[6] S. Coppieters; H. Zhang; X. Fan; N. Vandermeiren; A. Breda; D. Debruyne Process-induced bottom defects in clinch forming: simulation and effect on the structural integrity of single shear lap specimens, Mater. Des., Volume 130 (2017), pp. 336-348

[7] P. Koc; B. Stok Computer-aided identification of the yield curve of sheet metal after onset of necking, Compos. Mater. Sci., Volume 31 (2004), pp. 155-168

[8] D. Debruyne; S. Cooreman; D. Lecompte; H. Sol; D. Van Hemelrijck Identification of the stress–strain behaviour of a tensile specimen after necking, Proceedings of the SEM Annual Conference and Exposition, 2006

[9] S. Coppieters; T. Kuwabara Identification of post-necking hardening phenomena in ductile sheet metal, Exp. Mech., Volume 54 (2014), pp. 1355-1371

[10] Y. Ling Uniaxial true stress–strain after necking, AMP J. Technol., Volume 5 (1996), pp. 37-48

[11] J. Kajberg; G. Lindkvis Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields, Int. J. Solids Struct., Volume 41 (2004), pp. 3439-3459

[12] K. Denys; S. Coppieters; M. Seefeldt; D. Debruyne Multi-dic setup for the identification of a 3d anisotropic yield surface of thick high strength steel using a double perforated specimen, Mech. Mater., Volume 100 (2016), pp. 96-108

[13] K. Denys; S. Coppieters; R. Van Hecke; S. Cooreman; D. Debruyne Identification of a 3d anisotropic yield surface of x70 pipeline steel using a multi-dic setup, September 26–30, Calgary, Alberta, Canada (2016)

[14] S. Hertele; W. De Waele; R. Denys; M. Verstraete Full-range stress–strain behaviour of contemporary pipeline steels, part 1: model description, Int. J. Press. Vessels Piping, Volume 92 (2012), pp. 34-40

[15] S. Cooreman Identification of the Plastic Material Behaviour Through Full-Field Displacement Measurements and Inverse Methods, University of Brussels (VUB), 2008 (Ph.D. Thesis)

[16] D. Lecompte; S. Cooreman; S. Coppieters; J. Vantomme; H. Sol; D. Debruyne Parameter identification for anisotropic plasticity model using digital image correlation, Eur. J. Control, Volume 18 (2009) no. 3, pp. 393-418

[17] T. Pottier; F. Toussaint; P. Vacher Contribution of heterogeneous strain field measurements and boundary conditions modelling in inverse identification of material parameters, Eur. J. Mech. A, Solids, Volume 30 (2011), pp. 373-382

[18] MatchID MatchID Software, 2016 http://www.matchidmbc.com

[19] Simulia, Abaqus/standard, version 6.13.

[20] J. Nelder; R. Mead A simplex method for function minimization, Comput. J., Volume 7 (1965), pp. 308-313

[21] F. Gao; L. Han Implementing the Nelder–Mead simplex algorithm with adaptive parameters, Comput. Optim. Appl., Volume 51 (2010), pp. 259-277

[22] A. Kuprat; A. Khamayseh; D. George; L. Larkey Volume conserving smoothing for piecewise linear curves, surfaces, and triple lines, J. Comput. Phys., Volume 172 (2001), pp. 99-118

[23] P. Bridgman Studies in Large Plas Flow and Fracture, McGraw–Hill, New York, 1952

[24] G. Mirone A new model for the elastoplastic characterization and the stress–strain determination on the necking section of a tensile specimen, Int. J. Solids Struct., Volume 41 (2004), pp. 3545-3564

Cited by Sources:

Comments - Policy