As shown by Crow in 1970, the evolution of two almost parallel vortex filaments with opposite circulation exhibits a long-wave instability. Ultimately, the symmetric mode increases its amplitude reconnecting both filaments and ending into the formation of an almost periodic structure of vortex rings. This is a universal process, which appears in a wide range of scales: from the vortex trails behind an airplane to a microscopic scale of superfluids and Bose–Einstein condensates. In this paper, I will focus on the vortex reconnection for the latter case by employing Gross–Pitaevskii theory. Essentially, I focus on the well-known laws of interaction and motion of vortex filaments. By means of numerical simulations, as well as theoretically, I show that a self-similar finite-time dynamics manifests near the reconnection time. A self-similar profile is selected showing excellent agreement with numerical simulations.
Comme le montre Crow en 1970, l'évolution de deux filaments de vortex presque parallèles à circulation opposée présente une instabilité à grand longueur d'onde. Le mode symétrique augmente d'amplitude en reconnectant les deux filaments et se termine par la formation d'une structure presque périodique d'anneaux de vortex. Il s'agit d'un processus universel qui apparaît à différentes échelles : des allées de vortex derrière un avion à l'échelle microscopique des superfluides et des condensats de Bose–Einstein. Dans cet article, je me concentre sur la reconnection de vortex pour le dernier cas en utilisant la théorie de Gross–Pitaevskii. Je me concentre essentiellement sur les lois bien connues de l'interaction et du mouvement des filaments de vortex. À l'aide de simulations numériques ainsi que théoriquement, je montre qu'une dynamique en temps fini auto-similaire se manifeste près du temps de reconnection. Un profil auto-similaire est sélectionné, montrant un excellent accord avec les simulations numériques.
Accepted:
Published online:
Mots-clés : Reconnection de vortex, Filaments de vorticité, Équation de Gross–Pitaevskii, Solutions auto-similaires
Sergio Rica 1, 2, 3
@article{CRMECA_2019__347_4_365_0, author = {Sergio Rica}, title = {Self-similar vortex reconnection}, journal = {Comptes Rendus. M\'ecanique}, pages = {365--375}, publisher = {Elsevier}, volume = {347}, number = {4}, year = {2019}, doi = {10.1016/j.crme.2019.03.011}, language = {en}, }
Sergio Rica. Self-similar vortex reconnection. Comptes Rendus. Mécanique, Patterns and dynamics: homage to Pierre Coullet / Formes et dynamique: hommage à Pierre Coullet, Volume 347 (2019) no. 4, pp. 365-375. doi : 10.1016/j.crme.2019.03.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.03.011/
[1] Instability and reconnection in the head-on collision of two vortex rings, Nature, Volume 357 (1992), pp. 225-227
[2] https://www.youtube.com/watch?time_continue=19&v=EVbdbVhzcM4 (Smarter Every Day 195, Two vortex rings colliding in slow motion)
[3] Emergence of small scales in vortex ring collisions, Phys. Rev. Fluids, Volume 3 (2018)
[4] Experimental observation of the collision of three vortex rings, Fluid Dyn. Res., Volume 47 (2015)
[5] Symmetrical collision of multiple vortex rings, Phys. Fluids, Volume 29 (2017)
[6] Stability theory for a pair of trailing vortices, AIAA J., Volume 8 (1970), pp. 2172-2179
[7] Characterization of reconnecting vortices in superfluid helium, Proc. Natl. Acad. Sci. USA, Volume 105 (2008)
[8] Direct observation of Kelvin waves excited by quantized vortex reconnection, Proc. Natl. Acad. Sci. USA, Volume 111 (2014), p. 4707
[9] On the theory of superconductivity, Zh. Eksp. Teor. Fiz., Volume 20 (1950), p. 1064
[10] Bose–Einstein condensation and liquid helium, Phys. Rev., Volume 104 (1956), p. 576
[11] Hydrodynamics of a superfluid condensate, J. Math. Phys., Volume 13 (1961), p. 451-207
[12] Vortices in Nonlinear Fields: From Liquid Crystals to Superfluids, from Non-equilibrium Patterns to Cosmic Strings, Oxford University Press, 1999
[13] Collapse and amplification of a vortex filament, Phys. Fluids, Volume 28 (1985), p. 794
[14] Vortex dynamics and the existence of solutions to the Navier–Stokes equations, Phys. Fluids, Volume 30 (1987), p. 1606
[15] Non-universal and non-singular asymptotics of interacting vortex filaments, Proc. IUTAM, Volume 707 (2012), pp. 191-204
[16] Motion in a Bose condensate: IX. Crow instability of antiparallel vortex pairs, J. Phys. A, Math. Gen., Volume 34 (2001)
[17] Three-dimensional vortex dynamics in superfluid 4He: line-line and line-boundary interactions, Phys. Rev. B, Volume 31 (1985), p. 5782
[18] Route to vortex reconnection, Phys. Rev. Lett., Volume 72 (1993), p. 482
[19] Vortex reconnection in superfluid helium, Phys. Rev. Lett., Volume 71 (1993), p. 1375
[20] Analytic solution of the approach of quantum vortices towards reconnection, Phys. Rev. Lett., Volume 111 (2013)
[21] Universal and nonuniversal aspects of vortex reconnections in superfluids, Phys. Rev. Fluids, Volume 2 (2017)
[22] Structure, dynamics, and reconnection of vortices in a nonlocal model of superfluids, Phys. Rev. Fluids, Volume 3 (2018)
[23] Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., Volume 55 (1858), pp. 25-55 (Translation by On integrals of the hydrodynamical equations, which express vortex-motion Philos. Mag., 33, 1867, pp. 485-510)
[24] Simplified equations for the interaction of nearly parallel vortex filaments, J. Fluid Mech., Volume 288 (1995), pp. 201-248
[25] Wave collapse, Usp. Fiz. Nauk, Volume 155 (1988), pp. 529-533
[26] Essai sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193-248
[27] Singularité dans l'évolution du fluide parfait, C. R. Acad. Sci. Paris, Ser. II, Volume 318 (1994), pp. 865-870
[28] Singularities: Formation, Structure, and Propagation, Cambridge University Press, Cambridge, UK, 2015
[29] Motions in a Bose condensate. IV. Axisymmetric solitary waves, J. Phys. A, Math. Gen., Volume 15 (1982), pp. 2599-2619
[30] Collision of almost parallel vortex filaments, Commun. Pure Appl. Math., Volume 70 (2017), pp. 378-405
Cited by Sources:
Comments - Policy