Comptes Rendus
Patterns and dynamics: homage to Pierre Coullet / Formes et dynamique : hommage à Pierre Coullet
Self-similar vortex reconnection
Comptes Rendus. Mécanique, Volume 347 (2019) no. 4, pp. 365-375.

As shown by Crow in 1970, the evolution of two almost parallel vortex filaments with opposite circulation exhibits a long-wave instability. Ultimately, the symmetric mode increases its amplitude reconnecting both filaments and ending into the formation of an almost periodic structure of vortex rings. This is a universal process, which appears in a wide range of scales: from the vortex trails behind an airplane to a microscopic scale of superfluids and Bose–Einstein condensates. In this paper, I will focus on the vortex reconnection for the latter case by employing Gross–Pitaevskii theory. Essentially, I focus on the well-known laws of interaction and motion of vortex filaments. By means of numerical simulations, as well as theoretically, I show that a self-similar finite-time dynamics manifests near the reconnection time. A self-similar profile is selected showing excellent agreement with numerical simulations.

Comme le montre Crow en 1970, l'évolution de deux filaments de vortex presque parallèles à circulation opposée présente une instabilité à grand longueur d'onde. Le mode symétrique augmente d'amplitude en reconnectant les deux filaments et se termine par la formation d'une structure presque périodique d'anneaux de vortex. Il s'agit d'un processus universel qui apparaît à différentes échelles : des allées de vortex derrière un avion à l'échelle microscopique des superfluides et des condensats de Bose–Einstein. Dans cet article, je me concentre sur la reconnection de vortex pour le dernier cas en utilisant la théorie de Gross–Pitaevskii. Je me concentre essentiellement sur les lois bien connues de l'interaction et du mouvement des filaments de vortex. À l'aide de simulations numériques ainsi que théoriquement, je montre qu'une dynamique en temps fini auto-similaire se manifeste près du temps de reconnection. Un profil auto-similaire est sélectionné, montrant un excellent accord avec les simulations numériques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2019.03.011
Keywords: Vortex reconnection, Vortex filaments, Gross–Pitaevskii equation, Self-similar solutions
Mot clés : Reconnection de vortex, Filaments de vorticité, Équation de Gross–Pitaevskii, Solutions auto-similaires

Sergio Rica 1, 2, 3

1 Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
2 Physics Center, Universidad Adolfo Ibáñez, Santiago, Chile
3 LadHyX, CNRS, École polytechnique, Palaiseau, France
@article{CRMECA_2019__347_4_365_0,
     author = {Sergio Rica},
     title = {Self-similar vortex reconnection},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {365--375},
     publisher = {Elsevier},
     volume = {347},
     number = {4},
     year = {2019},
     doi = {10.1016/j.crme.2019.03.011},
     language = {en},
}
TY  - JOUR
AU  - Sergio Rica
TI  - Self-similar vortex reconnection
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 365
EP  - 375
VL  - 347
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2019.03.011
LA  - en
ID  - CRMECA_2019__347_4_365_0
ER  - 
%0 Journal Article
%A Sergio Rica
%T Self-similar vortex reconnection
%J Comptes Rendus. Mécanique
%D 2019
%P 365-375
%V 347
%N 4
%I Elsevier
%R 10.1016/j.crme.2019.03.011
%G en
%F CRMECA_2019__347_4_365_0
Sergio Rica. Self-similar vortex reconnection. Comptes Rendus. Mécanique, Volume 347 (2019) no. 4, pp. 365-375. doi : 10.1016/j.crme.2019.03.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.03.011/

[1] T.T. Lim; T.B. Nickels Instability and reconnection in the head-on collision of two vortex rings, Nature, Volume 357 (1992), pp. 225-227

[2] https://www.youtube.com/watch?time_continue=19&v=EVbdbVhzcM4 (Smarter Every Day 195, Two vortex rings colliding in slow motion)

[3] R. McKeown; R. Ostilla-Mónico; A. Pumir; M. Brenner; S.M. Rubinstein Emergence of small scales in vortex ring collisions, Phys. Rev. Fluids, Volume 3 (2018)

[4] R.H. Hernández; E. Monsalve Experimental observation of the collision of three vortex rings, Fluid Dyn. Res., Volume 47 (2015)

[5] R.H. Hernández; T. Reyes Symmetrical collision of multiple vortex rings, Phys. Fluids, Volume 29 (2017)

[6] S.C. Crow Stability theory for a pair of trailing vortices, AIAA J., Volume 8 (1970), pp. 2172-2179

[7] G.P. Bewley; M.S. Paoletti; K.R. Sreenivasan; D.P. Lathrop Characterization of reconnecting vortices in superfluid helium, Proc. Natl. Acad. Sci. USA, Volume 105 (2008)

[8] E. Fonda; D.P. Meichle; N.T. Ouellette; S. Hormoz; D.P. Lathrop Direct observation of Kelvin waves excited by quantized vortex reconnection, Proc. Natl. Acad. Sci. USA, Volume 111 (2014), p. 4707

[9] V.L. Ginzburg; L.D. Landau On the theory of superconductivity, Zh. Eksp. Teor. Fiz., Volume 20 (1950), p. 1064

[10] O. Penrose; L. Onsager Bose–Einstein condensation and liquid helium, Phys. Rev., Volume 104 (1956), p. 576

[11] L.P. Pitaevskii; E.P. Gross Hydrodynamics of a superfluid condensate, J. Math. Phys., Volume 13 (1961), p. 451-207

[12] L.M. Pismen Vortices in Nonlinear Fields: From Liquid Crystals to Superfluids, from Non-equilibrium Patterns to Cosmic Strings, Oxford University Press, 1999

[13] E.D. Siggia Collapse and amplification of a vortex filament, Phys. Fluids, Volume 28 (1985), p. 794

[14] A. Pumir; E.D. Siggia Vortex dynamics and the existence of solutions to the Navier–Stokes equations, Phys. Fluids, Volume 30 (1987), p. 1606

[15] S. Hormoz; M.P. Brenner; S. Hormoz; M.P. Brenner Non-universal and non-singular asymptotics of interacting vortex filaments, Proc. IUTAM, Volume 707 (2012), pp. 191-204

[16] N.G. Berloff; P.H. Roberts Motion in a Bose condensate: IX. Crow instability of antiparallel vortex pairs, J. Phys. A, Math. Gen., Volume 34 (2001)

[17] K.W. Schwarz Three-dimensional vortex dynamics in superfluid 4He: line-line and line-boundary interactions, Phys. Rev. B, Volume 31 (1985), p. 5782

[18] A.T.A.M. de Macle; R.G.K.M. Aarts Route to vortex reconnection, Phys. Rev. Lett., Volume 72 (1993), p. 482

[19] J. Koplik; H. Levine Vortex reconnection in superfluid helium, Phys. Rev. Lett., Volume 71 (1993), p. 1375

[20] L. Boué; D. Khomenko; V.S. L'vov; I. Procaccia Analytic solution of the approach of quantum vortices towards reconnection, Phys. Rev. Lett., Volume 111 (2013)

[21] A. Villois; D. Proment; G. Krstulovic Universal and nonuniversal aspects of vortex reconnections in superfluids, Phys. Rev. Fluids, Volume 2 (2017)

[22] J. Reneuve; J. Salort; L. Chevillard Structure, dynamics, and reconnection of vortices in a nonlocal model of superfluids, Phys. Rev. Fluids, Volume 3 (2018)

[23] H. Helmholtz; P.G. Tait Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., Volume 55 (1858), pp. 25-55 (Translation by On integrals of the hydrodynamical equations, which express vortex-motion Philos. Mag., 33, 1867, pp. 485-510)

[24] R. Klein; A.J. Majda; K. Damodaran Simplified equations for the interaction of nearly parallel vortex filaments, J. Fluid Mech., Volume 288 (1995), pp. 201-248

[25] V.E. Zakharov Wave collapse, Usp. Fiz. Nauk, Volume 155 (1988), pp. 529-533

[26] J. Leray Essai sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193-248

[27] Y. Pomeau; Y. Pomeau Singularité dans l'évolution du fluide parfait, C. R. Acad. Sci. Paris, Ser. II, Volume 318 (1994), pp. 865-870

[28] J. Eggers; M.A. Fontelos Singularities: Formation, Structure, and Propagation, Cambridge University Press, Cambridge, UK, 2015

[29] C. Jones; P.H. Roberts Motions in a Bose condensate. IV. Axisymmetric solitary waves, J. Phys. A, Math. Gen., Volume 15 (1982), pp. 2599-2619

[30] V. Banica; E. Faou; E. Miot Collision of almost parallel vortex filaments, Commun. Pure Appl. Math., Volume 70 (2017), pp. 378-405

Cited by Sources:

Comments - Policy