Comptes Rendus
Irreducible representation of surface distributions and Piola transformation of external loads sustainable by third gradient continua
Comptes Rendus. Mécanique, Volume 351 (2023) no. S3, pp. 91-120.

In this paper Piola transformations are found that relate the Eulerian and Lagrangian external loads which third gradient continua can sustain. As shown by Gabrio Piola and Paul Germain, the most effective postulation scheme in mechanics is based on the principle of virtual work and therefore continuum mechanics must be mathematically founded based on the theory of distributions and on differential geometry. Using the principle of virtual work, the set of admissible external loads sustainable by third gradient continua is seen to include: i) volume force density, ii) surface density of contact force, iii) surface density of contact double force, iv) surface density of contact triple force, v) line density of edge contact forces, vi) line density of contact edge double forces and vii) contact forces concentrated on wedge points. Following the nomenclature introduced by Paul Germain, forces are dual in virtual work of virtual displacements, surface and line double forces are dual of the derivatives of virtual displacements in the normal direction(s) of the surfaces and edges constituting the boundary of the continuum, and surface triple forces are dual of the second normal derivatives of virtual displacements. Volume and surface forces transform as in first gradient Cauchy continua. Moreover we find that: a) the virtual work expended by Eulerian surface triple force, when transformed into the Lagrangian description, must be represented as the work expended by all the kinds of external Lagrangian loads listed in i)-vii); b) Eulerian surface double force transforms into Lagrangian surface double force, surface contact force and edge contact line force; c) Eulerian edge contact line double force transforms into Lagrangian edge contact line double forces, edge line forces and point concentrated wedge forces; d) Eulerian edge and wedge contact line forces transforms into their Lagrangian counterpart only. The Piola transformation formulas deduced in this paper depend on the first, second and third gradients of placement. The presented results allow for the formulation of well-posed boundary condition problems for third gradient continua in the Lagrangian description, and are relevant in computational mechanics. In view of the obtained Piola transformation formulas, the concept of dead loads needs to be modified. We believe to have given an example of how the Mechanics in the French Style, as developed on the ideas by D’Alembert and Lagrange, is still a fertile tool of invention.

Dans cet article, on trouve les transformations de Piola qui relient les charges externes Eulériennes et Lagrangiennes que les milieux continuous de troisième gradient peuvent soutenir. Comme l’ont montré Gabrio Piola et Paul Germain, le schéma de postulation le plus efficace en mécanique est basé sur le principe des travaux virtuels et, par conséquent, la mécanique des continuums doit être mathématiquement fondée sur la théorie des distributions. En utilisant le principe des travaux virtuels, l’ensemble des charges externes admissibles soutenables par les continuums de troisième gradient comprend : i) la densité de force volumique, ii) la densité de surface de la force de contact, iii) la densité de surface de la double force de contact, iv) la densité de surface de la triple force de contact, v) la densité linéaire des forces de contact de bord, vi) la densité linéaire des doubles forces de contact de bord et vii) les forces de contact concentrées sur les points de coin. Suivant la nomenclature introduite par Paul Germain, les forces sont duales en travail virtuel des déplacements virtuels, les forces doubles de surface et de ligne sont duales des dérivées des déplacements virtuels dans la ou les directions normales des surfaces et des bords constituant la frontière du continuum et les forces triples de surface sont duales des dérivées secondes normales des déplacements virtuels. Les forces de volume et de surface se transforment comme dans les milieux continus de Cauchy à premier gradient. En plus, nous trouvons que a) le travail virtuel dépensé par la force triple de surface Eulérienne, lorsqu’elle est transformée en description Lagrangienne, doit être représentée comme le travail dépensé par tous les types de charges Lagrangiennes externes énumérées aux points i)-vii) ; b) la force double de surface Eulérienne se transforme en force double de surface, en force de contact de surface et en force de ligne de contact Lagrangiennes, c) la force double de ligne de contact Eulérienne se transforme en doubles forces de ligne de contact Lagrangiennes, en forces de ligne et en forces de coin concentrées, d) les forces de ligne de contact de bord et de coin Eulériennes se transforment uniquement en leur contrepartie Lagrangienne. Les formules de transformation de Piola déduites dans cet article dépendent des premier, deuxième et troisième gradients du placement. Les résultats présentés permettent la formulation de problèmes de conditions aux limites bien posés pour les milieux continus de troisième gradient dans la description Lagrangienne et sont pertinents en mécanique computationnelle. Compte tenu des formules de transformation de Piola obtenues, le concept de charges mortes doit être aussi modifié. Nous pensons avoir donné un exemple de la façon dont la « Mécanique à la française », telle qu’elle a été développée à partir des idées de D’Alembert et de Lagrange, est toujours un outil de découverte fertile.

Received:
Accepted:
Online First:
Published online:
DOI: 10.5802/crmeca.157
Keywords: Third-gradient materials, Principle of Virtual Work, Piola Transformation, Eulerian description, Lagrangian description, Distribution theory, Differential Geometry
Mot clés : Continuum de troisième gradient, Principe des Travaux Virtuels, Transformations de Piola, Description lagrangienne, Description Eulerienne, Théorie des distributions, Géométrie différentielle

Francesco dell’Isola 1; Roberto Fedele 2

1 Department of Civil, Construction-Architectural and Environmental Engineering (DICEAA), University of L’Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100 L’Aquila, and International Research Center on Mathematics and Mechanics of Complex Systems (MEMOCS), University of L’Aquila, L’Aquila, Italy.
2 Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2023__351_S3_91_0,
     author = {Francesco dell{\textquoteright}Isola and Roberto Fedele},
     title = {Irreducible representation of surface distributions and {Piola} transformation of external loads sustainable by third gradient continua},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {91--120},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S3},
     year = {2023},
     doi = {10.5802/crmeca.157},
     language = {en},
}
TY  - JOUR
AU  - Francesco dell’Isola
AU  - Roberto Fedele
TI  - Irreducible representation of surface distributions and Piola transformation of external loads sustainable by third gradient continua
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 91
EP  - 120
VL  - 351
IS  - S3
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.157
LA  - en
ID  - CRMECA_2023__351_S3_91_0
ER  - 
%0 Journal Article
%A Francesco dell’Isola
%A Roberto Fedele
%T Irreducible representation of surface distributions and Piola transformation of external loads sustainable by third gradient continua
%J Comptes Rendus. Mécanique
%D 2023
%P 91-120
%V 351
%N S3
%I Académie des sciences, Paris
%R 10.5802/crmeca.157
%G en
%F CRMECA_2023__351_S3_91_0
Francesco dell’Isola; Roberto Fedele. Irreducible representation of surface distributions and Piola transformation of external loads sustainable by third gradient continua. Comptes Rendus. Mécanique, Volume 351 (2023) no. S3, pp. 91-120. doi : 10.5802/crmeca.157. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.157/

[1] Thomas N. Winter The Mechanical Problems in the corpus of Aristotle, Faculty Publications, Classics and Religious Studies Department, 68, Digital Commons University of Nebraska-Lincoln, 2007

[2] Gabrio Piola Di un principio controverso della meccanica analitica di Lagrange e delle molteplici sue applicazioni, Springer, 2014 | DOI

[3] Francesco Dell’Isola; Giulio Maier; Umberto Perego; Ugo Andreaus; Raffaele Esposito; Samuel Forest The Complete Works of Piola, Gabrio: Volume I. Commented English Translation-English and Italian Edition, Springer, 2014 | DOI

[4] Francesco Dell’Isola; Alessandro Della Corte; Ivan Giorgio Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives, Math. Mech. Solids, Volume 22 (2017) no. 4, pp. 852-872 | DOI | MR | Zbl

[5] Mario Spagnuolo; Francesco Dell’Isola; A. Cazzani The Study of the Genesis of Novel Mathematical and Mechanical Theories Provides an Inspiration for Future Original Research, Evaluation of Scientific Sources in Mechanics: Heiberg’s Prolegomena to the Works of Archimedes and Hellinger’s Encyclopedia Article on Continuum Mechanics (Francesco Dell’Isola; S. R. Eugster; M. Spagnuolo; E. Barchiesi, eds.) (Advanced Structured Materials), Volume 152, Springer, 2022, pp. 1-73 | DOI

[6] Paul Germain La méthode des puissances virtuelles en mécanique des milieux continus. Première partie: Théorie du second gradient, J. Méc., Paris, Volume 12 (1973) no. 2, pp. 235-274 | DOI | Zbl

[7] Paul Germain The method of virtual power in continuum mechanics. Part 2: Microstructure, SIAM J. Appl. Math., Volume 25 (1973) no. 4, pp. 556-575 | DOI | Zbl

[8] Paul Germain The method of virtual power in the mechanics of continuous media, I: Second-gradient theory, Math. Mech. Complex Syst., Volume 12 (2020) no. 2, pp. 153-190 | DOI | MR | Zbl

[9] Luca Placidi; Emilio Barchiesi; Anil Misra A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results, Math. Mech. Complex Syst., Volume 6 (2018) no. 2, pp. 77-100 | DOI | MR | Zbl

[10] Ivan Giorgio A variational formulation for one-dimensional linear thermoviscoelasticity, Math. Mech. Complex Syst., Volume 9 (2022) no. 4, pp. 397-412 | DOI | MR | Zbl

[11] Emilio Barchiesi; Mario Spagnuolo; Luca Placidi Mechanical metamaterials: a state of the art, Math. Mech. Solids, Volume 24 (2019) no. 1, pp. 212-234 | DOI | MR | Zbl

[12] Ivan Giorgio; Alessandro Ciallella; Daria Scerrato A study about the impact of the topological arrangement of fibers on fiber-reinforced composites: some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials, International Journal of Solids and Structures, Volume 203 (2020), pp. 73-83 | DOI

[13] Ivan Giorgio; Mario Spagnuolo; Ugo Andreaus; Daria Scerrato; Alberto Maria Bersani In-depth gaze at the astonishing mechanical behavior of bone: A review for designing bio-inspired hierarchical metamaterials, Math Mech Solids, Volume 26 (2021) no. 7, pp. 1074-1103 | DOI | MR | Zbl

[14] Andre Lichnerowicz Éléments de calcul tensoriel, Section de Mathématiques, 259, Armand Colin, 1951 | Zbl

[15] Francesco Dell’Isola; Pierre Seppecher; Angela Madeo How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach “à la D’Alembert”, Z. Angew. Math. Phys., Volume 63 (2012) no. 6, pp. 1119-1141 | DOI | MR | Zbl

[16] N. Auffray; Francesco Dell’Isola; Va Eremeyev; Angela Madeo; G. Rosi Analytical continuum mechanics à la Hamilton-piola least action principle for second gradient continua and capillary fluids, Math. Mech. Solids, Volume 20 (2015) no. 4, pp. 375-417 | DOI | MR | Zbl

[17] Castrenze Polizzotto A note on the higher order strain and stress tensors within deformation gradient elasticity theories: Physical interpretations and comparisons, Int. J. Solids Struct., Volume 90 (2016), pp. 116-121 | DOI

[18] Albert E. Green; Ronald S. Rivlin Multipolar continuum mechanics, Arch. Ration. Mech. Anal., Volume 17 (1964), pp. 113-147 | DOI | MR | Zbl

[19] R Fedele Piola’s approach to the equilibrium problem for bodies with second gradient energies. Part I: first gradient theory and differential geometry, Contin. Mech. Thermodyn., Volume 34 (2021) no. 2, pp. 445-474 | DOI | MR

[20] Roberto Fedele Approach a la Piola for the equilibrium problem of bodies with second gradient energies. Part II: Variational derivation of second gradient equations and their transport, Contin. Mech. Thermodyn., Volume 34 (2022), pp. 1087-1111 | DOI | MR

[21] Roberto Fedele Third-gradient continua: nonstandard equilibrium equations and selection of work conjugate variables, Math Mech Solids, Volume 27 (2022) no. 10, pp. 2046-2072 | DOI | MR | Zbl

[22] Sergei Khakalo; Jarkko Niiranen Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: For materials and structures from nano- to macro-scales, Eur. J. Mech., A, Solids, Volume 71 (2018), pp. 292-319 | DOI | MR | Zbl

[23] Manuel Ferretti; Angela Madeo; Francesco Dell’Isola; Philippe Boisse Modeling the onset of shear boundary layers in fibrous composite reinforcements by second gradient theory, Z. Angew. Math. Phys., Volume 65 (2014) no. 3, pp. 587-612 | DOI | MR | Zbl

[24] Pierre Seppecher Equilibrium of a Cahn-Hilliard fluid on a wall: influence of the wetting properties of the fluid upon the stability of a thin liquid film, Eur. J. Mech. B Fluids, Volume 12 (1993) no. 1, pp. 977-992 | DOI | MR

[25] Daria Scerrato; Alberto Maria Bersani; Ivan Giorgio Bio-inspired design of a porous resorbable scaffold for bone reconstruction: A preliminary study, Biomimetics, Volume 6 (2021) no. 1, p. 18 | DOI

[26] Pierre Seppecher Moving contact lines in the Cahn-Hilliard theory, Int. J. Eng. Sci., Volume 34 (1996) no. 9, pp. 977-992 | DOI | Zbl

[27] Arnold Krawietz Surface tension and reaction stresses of a linear incompressible second gradient fluid, Contin. Mech. Thermodyn., Volume 34 (2022), pp. 1027-1050 | DOI | MR

[28] Jean-Jacques Alibert; Pierre Seppecher; Francesco Dell’Isola Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients, Math. Mech. Solids, Volume 1 (2003) no. 8, pp. 51-73 | DOI | MR | Zbl

[29] Pierre Seppecher; Jean-Jacques Alibert; Francesco Dell’Isola Linear elastic trusses leading to continua with exotic mechanical interactions, J. Phys.: Conf. Ser., Volume 319 (2011), 012018 | DOI

[30] Houssam Abdoul-Anziz; Pierre Seppecher Strain gradient and generalized continua obtained by homogenizing frame lattices, Math. Mech. Complex Syst., Volume 6 (2018) no. 3, pp. 213-250 | DOI | MR | Zbl

[31] Francesco Dell’Isola; Pierre Seppecher; Jean-Jacques Alibert; Tomasz Lekszycki; Roman Grygoruk; Marek Pawlikowski; David Steigmann; Ivan Giorgio; Ugo Andreaus; Emilio Turco et al. Pantographic metamaterials: an example of mathematically driven design and of its technological challenges, Contin. Mech. Thermodyn., Volume 31 (2019) no. 4, pp. 851-884 | DOI | MR

[32] Roberto Fedele; Antonia Ciani; Luca Galantucci; Valentina Casalegno; Andrea Ventrella; Monica Ferraris Characterization of innovative CFC/Cu joints by full-field measurements and finite elements, Mater. Sci. Eng. A, Volume 595 (2014), pp. 306-317 | DOI

[33] Roberto Fedele; Antonia Ciani; Luca Galantucci; Matteo Bettuzzi; Luca Andena A Regularized, Pyramidal Multi-grid Approach to Global 3D-Volume Digital Image Correlation Based on X-ray Micro-tomography, Fundam. Inf., Volume 125 (2013) no. 3-4, pp. 361-376 | DOI | MR

[34] Emilio Barchiesi; Francesco Dell’Isola; François Hild On the validation of homogenized modeling for bi-pantographic metamaterials via digital image correlation, Int. J. Solids Struct., Volume 208-209 (2021), pp. 49-62 | DOI

[35] Malo Valmalle; Antoine Vintache; Benjamin Smaniotto; Florian Gutmann; Mario Spagnuolo; Alessandro Ciallella; François Hild Local-global DVC analyses confirm theoretical predictions for deformation and damage onset in torsion of pantographic metamaterial, Mechanics of Materials (2022), 104379 | DOI

[36] Victor A. Eremeyev; Sergey A. Lurie; Yury O. Solyaev; Freancesco dell’Isola On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity, Z. Angew. Math. Phys., Volume 71 (2020), 182 | DOI | MR | Zbl

[37] Victor A. Eremeyev Strong ellipticity conditions and infinitesimal stability within nonlinear strain gradient elasticity, Mech. Res. Commun., Volume 117 (2021), 103782 | DOI

[38] Victor A. Eremeyev Local material symmetry group for first- and second-order strain gradient fluids, Math. Mech. Solids, Volume 26 (2021) no. 8, pp. 1173-1190 | DOI | MR | Zbl

[39] Francesco Dell’Isola; Ugo Andreaus; Luca Placidi At the origins and in the vanguard of peridynamics. Non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Piola, Gabrio, Math. Mech. Solids, Volume 20 (2015) no. 8, pp. 887-928 | DOI | Zbl

[40] Francesco Dell’Isola; Angela Madeo; Pierre Seppecher Cauchy tetrahedron argument applied to higher contact interactions, Arch. Ration. Mech. Anal., Volume 219 (2016) no. 3, pp. 1305-1341 | DOI | MR | Zbl

[41] Freancesco dell’Isola; Simon R. Eugster; Roberto Fedele; Pierre Seppecher Second-gradient continua: Lagrangian to Eulerian and back, Math. Mech. Solids, Volume 27 (2022) no. 12, pp. 2715-2750 | DOI | MR

[42] Vladimir I. Arnol’d Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, Springer, 2013 (ebook edition) | DOI

[43] Jerrold E. Marsden; Thomas J. R. Hughes Mathematical fundations of elasticity, Dover Publications, 1993 | DOI

[44] Michael Spivak A comprehensive introduction to differential geometry, Publish or Perish Inc., 1999

[45] Manfredo P. do Carmo Differential Geometry of Curves and Surfaces, Prentice Hall, 1976 | Zbl

[46] Raymond D. Mindlin; N. N. Eshel On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., Volume 4 (1968) no. 1, pp. 109-124 | DOI | Zbl

[47] Laurent Schwartz Théorie des Distributions, Hermann, 1966 | Zbl

[48] Francesco Dell’Isola; Emilio Barchiesi; Luca Placidi Levi-Civita, Tullio, Encyclopedia of Continuum Mechanics (H. Altenbach; A Öchsner, eds.), Springer, 2019, pp. 1-11 | DOI

[49] Giuseppe Capobianco; Simon R. Eugster On the divergence theorem for submanifolds of Euclidean vector spaces within the theory of second-gradient continua, Z. Angew. Math. Phys., Volume 73 (2022), 86 | DOI | MR | Zbl

[50] Paul Germain Functional concepts in continuum mechanics, Meccanica, Volume 33 (1998) no. 8, pp. 433-444 | DOI | MR | Zbl

[51] Applications of Methods of Functional Analysis to Problems in Mechanics. Joint Symposium IUTAM IMU held in Marseille, Sept. 1-6, 1975 (Paul Germain; B. Nayroles, eds.) (Lecture Notes in Mathematics), Volume 503, Springer (2006) | Zbl

[52] Paul Germain; Pierre Suquet; Quoc Son Nguyen Continuum thermodynamics, J. Appl. Mech., Volume 50 (1983), pp. 1010-1020 | DOI | Zbl

[53] Francesco Dell’Isola; Pierre Seppecher Edge Contact Forces and Quasi-Balanced Power, Meccanica, Volume 32 (1997) no. 1, pp. 33-52 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy