Comptes Rendus
Existence of a weak solution to a regularized moving boundary fluid-structure interaction problem with poroelastic media
Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 505-534.

We study the existence of a weak solution to a regularized, moving boundary, fluid-structure interaction problem with multi-layered poroelastic media consisting of a reticular plate located at the interface between the free flow of an incompressible, viscous fluid modeled by the 2D Navier–Stokes equations, and a poroelastic medium modeled by the 2D Biot equations. The existence result holds for both the elastic and viscoelastic Biot model. The free fluid flow and the poroelastic medium are coupled via the moving interface (the reticular plate) through the kinematic and dynamic coupling conditions. The reticular plate is “transparent” to fluid flow. The nonlinear coupling over the moving interface presents a major difficulty since both the fluid domain and the poroelastic medium domain are functions of time, and the finite energy spaces do not provide sufficient regularity for the corresponding weak formulation to be well-defined. This is why in this manuscript we consider a regularized problem by employing convolution with a smooth kernel only where needed. The resulting problem is still very challenging due to the nonlinear coupling and the motion of the fluid and Biot domains. We provide a constructive existence proof for this regularized fluid-poroelastic structure interaction problem. This regularized problem is consistent with the original, nonregularized problem in the sense that the weak solutions constructed here, converge, as the regularization parameter tends to zero, to a classical solution of the original, nonregularized problem when such a classical solution exists, assuming viscoelasticity in the Biot poroelastic matrix [1]. Furthermore, the existence result presented in this manuscript, is a crucial stepping stone for the singular limit problem in which the thickness of the reticular plate tends to zero. Namely, in [1] we will show that, in the case of a Biot poroviscoelastic matrix, the moving boundary problem obtained in the singular limit as the thickness of the plate tends to zero, has a weak solution.

Received:
Accepted:
Online First:
Published online:
DOI: 10.5802/crmeca.190
Keywords: moving boundary problem, fluid-poroelastic structure interaction, well-posedness, nonlinear coupling, Biot equations, Navier–Stokes equations

Jeffrey Kuan 1; Sunčica Čanić 1; Boris Muha 2

1 Department of Mathematics, University of California, Berkeley, USA
2 Department of Mathematics, University of Zagreb, Croatia
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2023__351_S1_505_0,
     author = {Jeffrey Kuan and Sun\v{c}ica \v{C}ani\'c and Boris Muha},
     title = {Existence of a weak solution to a regularized moving boundary fluid-structure interaction problem with poroelastic media},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {505--534},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S1},
     year = {2023},
     doi = {10.5802/crmeca.190},
     language = {en},
}
TY  - JOUR
AU  - Jeffrey Kuan
AU  - Sunčica Čanić
AU  - Boris Muha
TI  - Existence of a weak solution to a regularized moving boundary fluid-structure interaction problem with poroelastic media
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 505
EP  - 534
VL  - 351
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.190
LA  - en
ID  - CRMECA_2023__351_S1_505_0
ER  - 
%0 Journal Article
%A Jeffrey Kuan
%A Sunčica Čanić
%A Boris Muha
%T Existence of a weak solution to a regularized moving boundary fluid-structure interaction problem with poroelastic media
%J Comptes Rendus. Mécanique
%D 2023
%P 505-534
%V 351
%N S1
%I Académie des sciences, Paris
%R 10.5802/crmeca.190
%G en
%F CRMECA_2023__351_S1_505_0
Jeffrey Kuan; Sunčica Čanić; Boris Muha. Existence of a weak solution to a regularized moving boundary fluid-structure interaction problem with poroelastic media. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 505-534. doi : 10.5802/crmeca.190. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.190/

[1] J. Kuan; Boris Muha; Sunčica Čanić Fluid-poroelastic structure interaction with moving boundary (2023) (In draft form. To be submitted)

[2] Doina Cioranescu; Jeannine Saint Jean Paulin Homogenization of Reticulated Structures, Applied Mathematical Sciences, 136, Springer, 1998 | Zbl

[3] Boris Muha; Sunčica Čanić Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal., Volume 207 (2013) no. 3, pp. 919-968 | DOI | MR | Zbl

[4] Boris Muha; Sunčica Čanić Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy, Interfaces Free Bound., Volume 17 (2015) no. 4, pp. 465-495 | DOI | MR | Zbl

[5] Boris Muha; Sunčica Čanić Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition, J. Differ. Equations, Volume 260 (2016) no. 12, pp. 8550-8589 | DOI | MR | Zbl

[6] Boris Muha; Sunčica Čanić Existence of a solution to a fluid-multi-layered-structure interaction problem, J. Differ. Equations, Volume 256 (2014) no. 2, pp. 658-706 | DOI | MR | Zbl

[7] Sunčica Čanić; Marija Galić; Boris Muha Analysis of a 3D nonlinear, moving boundary problem describing fluid-mesh-shell interaction, Trans. Am. Math. Soc., Volume 373 (2020) no. 9, pp. 6621-6681 | DOI | MR | Zbl

[8] Boris Muha A note on optimal regularity and regularizing effects of point mass coupling for a heat-wave system, J. Math. Anal. Appl., Volume 425 (2015) no. 2, pp. 1134-1147 | DOI | MR | Zbl

[9] Barbora Benešová; Malte Kampschulte; Sebastian Schwarzacher A variational approach to hyperbolic evolutions and fluid-structure interactions (2020) (https://arxiv.org/abs/2008.04796)

[10] Viorel Barbu; Zoran Grujić; Irena Lasiecka; Amjad Tuffaha Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, Fluids and waves. Recent trends in applied analysis (Contemporary Mathematics), Volume 440, American Mathematical Society, 2007, pp. 55-82 | DOI | MR | Zbl

[11] Viorel Barbu; Zoran Grujić; Irena Lasiecka; Amjad Tuffaha Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana Univ. Math. J., Volume 57 (2008) no. 3, pp. 1173-1207 | DOI | MR | Zbl

[12] Igor Kukavica; Amjad Tuffaha; Mohammed Ziane Strong solutions for a fluid structure interaction system, Adv. Differ. Equ., Volume 15 (2010) no. 3-4, pp. 231-254 | MR | Zbl

[13] Hugo Beirão da Veiga On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech., Volume 6 (2004) no. 1, pp. 21-52 | DOI | MR | Zbl

[14] Antonin Chambolle; Benoît Desjardins; Maria J. Esteban; Céline Grandmont Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., Volume 7 (2005) no. 3, pp. 368-404 | DOI | MR | Zbl

[15] C. H. Arthur Cheng; Daniel Coutand; Steve Shkoller Navier-Stokes equations interacting with a nonlinear elastic biofluid shell, SIAM J. Math. Anal., Volume 39 (2007) no. 3, pp. 742-800 | DOI | MR | Zbl

[16] C. H. Arthur Cheng; Steve Shkoller The interaction of the 3D Navier-Stokes equations with a moving nonlinear Koiter elastic shell, SIAM J. Math. Anal., Volume 42 (2010) no. 3, pp. 1094-1155 | DOI | MR | Zbl

[17] Daniel Coutand; Steve Shkoller Motion of an elastic solid inside an incompressible viscous fluid, Arch. Ration. Mech. Anal., Volume 176 (2005) no. 1, pp. 25-102 | DOI | MR | Zbl

[18] Daniel Coutand; Steve Shkoller The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal., Volume 179 (2006) no. 3, pp. 303-352 | DOI | MR | Zbl

[19] Céline Grandmont Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal., Volume 40 (2008) no. 2, pp. 716-737 | DOI | MR | Zbl

[20] Céline Grandmont; Matthieu Hillairet Existence of global strong solutions to a beam-fluid interaction system, Arch. Ration. Mech. Anal., Volume 220 (2016) no. 3, pp. 1283-1333 | DOI | MR | Zbl

[21] Céline Grandmont; Mária Lukáčová-Medvid’ová; Šárka Nečasová Mathematical and numerical analysis of some FSI problems, Fluid-structure interaction and biomedical applications (T. Bodnár; G. P. Galdi; Š. Nečasová, eds.) (Advances in Mathematical Fluid Mechanics), Birkhäuser, 2014, pp. 1-77 | DOI | Zbl

[22] Mihaela Ignatova; Igor Kukavica; Irena Lasiecka; Amjad Tuffaha On well-posedness for a free boundary fluid-structure model, J. Math. Phys., Volume 53 (2012) no. 11, 115624, 13 pages | DOI | MR | Zbl

[23] Mihaela Ignatova; Igor Kukavica; Irena Lasiecka; Amjad Tuffaha On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity, Volume 27 (2014) no. 3, pp. 467-499 | DOI | MR | Zbl

[24] Igor Kukavica; Amjad Tuffaha Solutions to a fluid-structure interaction free boundary problem, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 4, pp. 1355-1389 | DOI | MR | Zbl

[25] Daniel Lengeler; Michael Rŭžička Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell, Arch. Ration. Mech. Anal., Volume 211 (2014) no. 1, pp. 205-255 | DOI | MR | Zbl

[26] Julien Lequeurre Existence of strong solutions to a fluid-structure system, SIAM J. Math. Anal., Volume 43 (2011) no. 1, pp. 389-410 | DOI | MR | Zbl

[27] Boris Muha; Sunčica Čanić A nonlinear, 3D fluid-structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof, Commun. Inf. Syst., Volume 13 (2013) no. 3, pp. 357-397 | DOI | MR | Zbl

[28] Boris Muha; Sunčica Čanić Existence of a solution to a fluid-multi-layered-structure interaction problem, J. Differ. Equations, Volume 256 (2014) no. 2, pp. 658-706 | DOI | MR | Zbl

[29] Jean-Pierre Raymond; Muthusamy Vanninathan A fluid-structure model coupling the Navier-Stokes equations and the Lamé system, J. Math. Pures Appl., Volume 102 (2014) no. 3, pp. 546-596 | DOI | Zbl

[30] Sunčica Čanić; Andro Mikelić Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries, SIAM J. Appl. Dyn. Syst., Volume 2 (2003) no. 3, pp. 431-463 | DOI | MR | Zbl

[31] Sunčica Čanić; Andro Mikelić Effective equations describing the flow of a viscous incompressible fluid through a long elastic tube, C. R. Méc. Acad. Sci. Paris, Volume 300 (2002) no. 10, pp. 661-666 | Zbl

[32] Sunčica Čanić; Daniele Lamponi; Andro Mikelić; Josip Tambača Self-Consistent Effective Equations Modeling Blood Flow in Medium-to-Large Compliant Arteries, Multiscale Model. Simul., Volume 3 (2005) no. 3, pp. 559-596 | DOI | MR | Zbl

[33] Sunčica Čanić; Andro Mikelić; Josip Tambača A two-dimensional effective model describing fluid-structure interaction in blood flow: analysis, simulation and experimental validation, C. R. Méc. Acad. Sci. Paris, Volume 333 (2005) no. 12, pp. 867-883 | Zbl

[34] Josip Tambača; Sunčica Čanić; Andro Mikelić Effective Model of the Fluid Flow through Elastic Tube with Variable Radius, Grazer Math. Ber., Volume 348 (2005), pp. 91-112 | MR | Zbl

[35] Sunčica Čanić; Craig J. Hartley; Doreen Rosenstrauch; Josip Tambača; Giovanna Guidoboni; Andro Mikelić Blood Flow in Compliant Arteries: An Effective Viscoelastic Reduced Model, Numerics and Experimental Validation, Ann. Biomed. Eng., Volume 34 (2006), pp. 575-592 | DOI

[36] Andro Mikelić; Sunčica Čanić Homogenization Closure for a Two-Dimensional Effective Model Describing Fluid-Structure Interaction in Blood Flow, Math everywhere. Deterministic and stochastic modelling in biomedicine, economics and industry, Springer, 2007, pp. 193-205 | Zbl

[37] Sunčica Čanić; Josip Tambača; Giovanna Guidoboni; Andro Mikelić; Craig J. Hartley; Doreen Rosenstrauch Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow, SIAM J. Appl. Math., Volume 67 (2006) no. 1, pp. 164-193 | DOI | MR | Zbl

[38] Andro Mikelić; Giovanna Guidoboni; Sunčica Čanić Fluid-Structure Interaction in a Pre-Stressed Tube with Thick Elastic Walls I: The Stationary Stokes Problem, Netw. Heterog. Media, Volume 2 (2007) no. 3, pp. 397-423 | DOI | MR | Zbl

[39] Maurice A. Biot General theory of three-dimensional consolidation, J. Appl. Phys., Volume 12 (1941) no. 2, pp. 155-164 | DOI | Zbl

[40] Maurice A. Biot Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., Volume 26 (1955) no. 2, pp. 182-185 | DOI | MR | Zbl

[41] Jean-Louis Auriault Poroelastic media, Homogenization and porous media (Ulrich Hornung, ed.) (Interdisciplinary Applied Mathematics), Volume 6, Springer, 1997, pp. 63-182 | DOI | MR

[42] Olivier Coussy Mechanics and Physics of Porous Solids, John Wiley & Sons, 2011

[43] Andro Mikelić; Mary F. Wheeler Theory of the dynamic Biot-Allard equations and their link to the quasi-static Biot system, J. Math. Phys., Volume 53 (2012) no. 12, 123702, 15 pages | DOI | MR | Zbl

[44] Vivette Girault; Mary F. Wheeler; Benjamin Ganis; Mark E. Mear A lubrication fracture model in a poro-elastic medium, Math. Models Methods Appl. Sci., Volume 25 (2015) no. 4, pp. 587-645 | DOI | MR | Zbl

[45] Matteo Lesinigo; Carlo D’Angelo; Alfio Quarteroni A multiscale Darcy-Brinkman model for fluid flow in fractured porous media, Numer. Math., Volume 117 (2011) no. 4, pp. 717-752 | DOI | MR | Zbl

[46] Jennifer Young; Béatrice Rivière; Charles S. jun. Cox; Karen Uray A mathematical model of intestinal oedema formation, Math. Med. Biol., Volume 31 (2014) no. 1, pp. 1-15 | DOI | MR | Zbl

[47] Hélène Barucq; Monique Madaune-Tort; Patrick Saint-Macary Theoretical aspects of wave propagation for Biot’s consolidation problem, 8th Zaragoza-Pau conference on applied mathematics and statistics, Jaca, Spain, September 15–17, 2003 (Monografías del Seminario Matemático “García de Galdeano”), Volume 31, Universidad de Zaragoza, Zaragoza, 2004, pp. 449-458

[48] Hélène Barucq; Monique Madaune-Tort; Patrick Saint-Macary On nonlinear Biot’s consolidation models, Nonlinear Anal., Theory Methods Appl., Volume 63 (2005) no. 5-7, p. e985-e995 | DOI | Zbl

[49] Sebastian Owczarek A Galerkin method for Biot consolidation model, Math. Mech. Solids, Volume 15 (2010) no. 1, pp. 42-56 | DOI | MR | Zbl

[50] Ralph E. Showalter Diffusion in poro-elastic media, J. Math. Anal. Appl., Volume 251 (2000) no. 1, pp. 310-340 | DOI | MR | Zbl

[51] Ralph E. Showalter; Ning Su Partially saturated flow in a poroelastic medium, Discrete Contin. Dyn. Syst., Ser. B, Volume 1 (2001) no. 4, pp. 403-420 | DOI | MR | Zbl

[52] Alexander Ženíšek The existence and uniqueness theorem in Biot’s consolidation theory, Apl. Mat., Volume 29 (1984) no. 3, pp. 194-211 | DOI | MR | Zbl

[53] Lorena Bociu; Giovanna Guidoboni; Riccardo Sacco; Justin T. Webster Analysis of nonlinear poro-elastic and poro-visco-elastic models, Arch. Ration. Mech. Anal., Volume 222 (2016) no. 3, pp. 1445-1519 | DOI | MR | Zbl

[54] Lorena Bociu; Justin T. Webster Nonlinear quasi-static poroelasticity, J. Differ. Equations, Volume 296 (2021), pp. 242-278 | DOI | MR | Zbl

[55] Lorena Bociu; Boris Muha; Justin T. Webster Weak solutions in nonlinear poroelasticity with incompressible constituents, Nonlinear Anal., Real World Appl., Volume 67 (2022) no. 22, 103563 | DOI | MR | Zbl

[56] Magne Espedal; Antonio Fasano; Andro Mikelić Filtration in Porous Media and Industrial Applications, Lecture Notes in Mathematics, 1734, Springer, 2000 | DOI

[57] Grégoire Allaire; Todd Arbogast; Jean-Louis Auriault; Alain Bourgeat; Horia Ene; Kenneth M Golden; Ulrich Hornung; Andro Mikelić; Ralph E. Showalter Homogenization and Porous Media, Interdisciplinary Applied Mathematics, 6, Springer, 1997 | DOI | Zbl

[58] Cornelis J. van Duijn; Andro Mikelić; Mary F. Wheeler; Thomas Wick Thermoporoelasticity via homogenization I. Modeling and formal two-scale expansions, Int. J. Eng. Sci., Volume 138 (2019), pp. 1-25 | DOI | MR | Zbl

[59] Cornelis J. van Duijn; Andro Mikelić; Thomas Wick A monolithic phase-field model of a fluid-driven fracture in a nonlinear poroelastic medium, Math. Mech. Solids, Volume 24 (2019) no. 5, pp. 1530-1555 | DOI | MR | Zbl

[60] Andro Mikelić; Josip Tambača Derivation of a poroelastic elliptic membrane shell model, Appl. Anal., Volume 98 (2019) no. 1-2, pp. 136-161 | DOI | MR | Zbl

[61] Sanghyun Lee; Andro Mikelić; Mary F. Wheeler; Thomas Wick Phase-field modeling of two phase fluid filled fractures in a poroelastic medium, Multiscale Model. Simul., Volume 16 (2018) no. 4, pp. 1542-1580 | DOI | MR | Zbl

[62] Thomas Carraro; Eduard Marušić-Paloka; Andro Mikelić Effective pressure boundary condition for the filtration through porous medium via homogenization, Nonlinear Anal., Real World Appl., Volume 44 (2018), pp. 149-172 | DOI | MR | Zbl

[63] Andro Mikelić; Josip Tambača Derivation of a poroelastic flexural shell model, Multiscale Model. Simul., Volume 14 (2016) no. 1, pp. 364-397 | DOI | MR | Zbl

[64] Thomas Carraro; Christian R. Goll; Anna K. Marciniak-Czochra; Andro Mikelić Effective interface conditions for the forced infiltration of a viscous fluid into a porous medium using homogenization, Comput. Methods Appl. Mech. Eng., Volume 292 (2015), pp. 195-220 | DOI | MR | Zbl

[65] Anna K. Marciniak-Czochra; Andro Mikelić A Rigorous Derivation of the Equations for the Clamped Biot-Kirchhoff-Love Poroelastic plate, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 3, pp. 1035-1062 | DOI | MR | Zbl

[66] Thomas Carraro; Christian R. Goll; Anna K. Marciniak-Czochra; Andro Mikelić Pressure jump interface law for the Stokes-Darcy coupling: Confirmation by direct numerical simulations, J. Fluid Mech., Volume 732 (2013), pp. 510-536 | DOI | MR | Zbl

[67] Anna Marciniak-Czochra; Andro Mikelić Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization, Multiscale Model. Simul., Volume 10 (2012) no. 2, pp. 285-305 | DOI | MR | Zbl

[68] Andro Mikelić A global existence result for the equations describing unsaturated flow in porous media with dynamic capillary pressure, J. Differ. Equations, Volume 248 (2010) no. 6, pp. 1561-1577 | DOI | MR | Zbl

[69] Matthew Balhoff; Andro Mikelić; Mary F. Wheeler Polynomial filtration laws for low Reynolds number flows through porous media, Transp. Porous Med., Volume 81 (2010) no. 1, pp. 35-60 | DOI | MR

[70] Willi Jäger; Andro Mikelić Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization, Transp. Porous Med., Volume 78 (2009) no. 3, pp. 489-508 | DOI | MR

[71] Andro Mikelić On the justification of the Reynolds equation, describing isentropic compressible flows through a tiny pore, Ann. Univ. Ferrara, Sez. VII, Sci. Mat., Volume 53 (2007) no. 1, pp. 95-106 | DOI | MR | Zbl

[72] Vivette Girault; Béatrice Rivière DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition, SIAM J. Numer. Anal., Volume 47 (2009) no. 3, pp. 2052-2089 | DOI | MR | Zbl

[73] Marco Discacciati; Alfio Quarteroni Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation, Rev. Mat. Complut., Volume 22 (2009) no. 2, pp. 315-426 | DOI | MR | Zbl

[74] Lori Badea; Marco Discacciati; Alfio Quarteroni Numerical analysis of the Navier–Stokes/Darcy coupling, Numer. Math., Volume 115 (2010) no. 2, pp. 195-227 | DOI | MR | Zbl

[75] Ayçıl Çeşmelioğlu; Béatrice Rivière Analysis of time-dependent Navier–Stokes flow coupled with Darcy flow, J. Numer. Math., Volume 16 (2008) no. 4, pp. 249-280 | DOI | MR | Zbl

[76] Yanzhao Cao; Max Gunzburger; Fei Hua; Xiaoming Wang Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition, Commun. Math. Sci., Volume 8 (2010) no. 1, pp. 1-25 | DOI | MR | Zbl

[77] Aycil Cesmelioglu; Vivette Girault; Béatrice Rivière Time-dependent coupling of Navier–Stokes and Darcy flows, ESAIM, Math. Model. Numer. Anal., Volume 47 (2013) no. 2, pp. 539-554 | DOI | Numdam | MR | Zbl

[78] Ilona Ambartsumyan; Vincent J. Ervin; Truong Nguyen; Ivan Yotov A nonlinear Stokes–Biot model for the interaction of a non-Newtonian fluid with poroelastic media, ESAIM, Math. Model. Numer. Anal., Volume 53 (2019) no. 6, pp. 1915-1955 | DOI | MR | Zbl

[79] Aycil Cesmelioglu Analysis of the coupled Navier–Stokes/Biot problem, J. Math. Anal. Appl., Volume 456 (2017) no. 2, pp. 970-991 | DOI | MR | Zbl

[80] Ralph E. Showalter Poroelastic filtration coupled to Stokes flow, Control theory of partial differential equations (Lecture Notes in Pure and Applied Mathematics), Volume 242, Chapman & Hall/CRC, 2005, pp. 229-241 | DOI | MR | Zbl

[81] Lorena Bociu; Sunčica Canic; Boris Muha; Justin T. Webster Multilayered poroelasticity interacting with Stokes flow, SIAM J. Math. Anal., Volume 53 (2021) no. 6, pp. 6243-6279 | DOI | MR | Zbl

[82] Roland Glowinski Finite element methods for incompressible viscous flow, Numerical methods for fluids (Part 3) (P. G. Ciarlet; J.-L. Lions, eds.) (Handbook of Numerical Analysis), Volume 9, North-Holland, 2003 | DOI | Zbl

[83] Anyastassia Seboldt; Oyekola Oyekole; Josip Tambača; Martina Bukač Numerical modeling of the fluid-porohyperelastic structure interaction, SIAM J. Sci. Comput., Volume 43 (2021) no. 4, p. A2923-A2948 | DOI | MR | Zbl

[84] Rana Zakerzadeh; Paolo Zunino A computational framework for fluid-porous structure interaction with large structural deformation, Meccanica, Volume 54 (2019), pp. 101-121 | DOI | MR

[85] Philippe G. Ciarlet Mathematical Elasticity Volume I: Three-Dimensional Elasticity, Studies in Mathematics and its Applications, 20, Elsevier, 1988 | Zbl

[86] Willi Jäger; Andro Mikelić On the boundary conditions at the contact interface between a porous medium and a free fluid, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 23 (1996) no. 3, pp. 403-465 | Numdam | MR | Zbl

[87] Willi Jäger; Andro Mikelić On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. Math., Volume 60 (2000) no. 4, pp. 1111-1127 | DOI | MR | Zbl

[88] Antonin Chambolle; Benoît Desjardins; Maria J. Esteban; Céline Grandmont Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., Volume 7 (2005) no. 3, pp. 368-404 | DOI | MR | Zbl

[89] Robert A. Adams Sobolev spaces, Pure and Applied Mathematics, 65, Academic Press Inc., 1975 | MR | Zbl

[90] Boris Muha; Sunčica Čanić A generalization of the Aubin-Lions-Simon compactness lemma for problems on moving domains, J. Differ. Equations, Volume 266 (2019) no. 12, pp. 8370-8418 | DOI | MR | Zbl

[91] Sunčica Čanić Fluid-structure interaction with incompressible fluids, Progress in Mathematical Fluid Dynamics (Luigi C. Berselli et al., eds.) (Lecture Notes in Mathematics), Volume 2272, Springer, 2020, pp. 15-87 | DOI | MR | Zbl

[92] Michael Dreher; Ansgar Jüngel Compact families of piecewise constant functions in L p (0,T;B), Nonlinear Anal., Theory Methods Appl., Volume 75 (2012) no. 6, pp. 3072-3077 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy