Comptes Rendus
Synthèse
Modeling of the vane test using a power-law fluid and model order reduction techniques: application to the identification of cement paste properties
Comptes Rendus. Mécanique, Volume 349 (2021) no. 3, pp. 501-517.

The effective modeling of fresh cementitious materials during setting is an active and challenging research topic. The material behavior as well as the parameters and properties are not fully understood yet. Therefore, the flow during casting is the subject of ongoing research. Previous works attempted to model cement paste as a solid subjected to yielding, or as a fluid modeled by a Brinkman law or a power law, both in 2D or 3D. Of existing models, 3D simulation of power-law fluids seems to carry the best predictive abilities, considering the shear-thinning behavior of the cement paste. In this work, we model the vane test of cement paste using a power-law pseudoplastic fluid. We also add all material and model parameters as extra coordinates of the problem, an appealing approach when identifying material properties, at the expense of increasing the problem’s dimensionality and computational time, often referred to as the combinatory explosion. However, using model order reduction techniques, we have the ability to circumvent the curse of dimensionality by solving a full-scale multidimensional problem as a sequence of lower dimensionality problems. In what follows, we use the Proper Generalized Decomposition (PGD) to solve a multidimensional (6D) nonlinear power-law fluid problem and identify the cement paste properties.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.97
Mots clés : Cement paste, Vane test, Proper generalized decomposition, Power-law fluid, Nonlinear model, Property identification
Chady Ghnatios 1 ; Gérard-Philippe Zéhil 2 ; Charbel Habchi 1

1 Department of Mechanical Engineering, Notre Dame University-Louaizé, P.O. Box 72, Zouk Mikhael, Zouk Mosbeh, Lebanon
2 Department of Civil and Environmental Engineering, Notre Dame University-Louaizé, P.O. Box 72, Zouk Mikhael, Zouk Mosbeh, Lebanon
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2021__349_3_501_0,
     author = {Chady Ghnatios and G\'erard-Philippe Z\'ehil and Charbel Habchi},
     title = {Modeling of the vane test using a power-law fluid and model order reduction techniques: application to the identification of cement paste properties},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {501--517},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {3},
     year = {2021},
     doi = {10.5802/crmeca.97},
     language = {en},
}
TY  - JOUR
AU  - Chady Ghnatios
AU  - Gérard-Philippe Zéhil
AU  - Charbel Habchi
TI  - Modeling of the vane test using a power-law fluid and model order reduction techniques: application to the identification of cement paste properties
JO  - Comptes Rendus. Mécanique
PY  - 2021
SP  - 501
EP  - 517
VL  - 349
IS  - 3
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.97
LA  - en
ID  - CRMECA_2021__349_3_501_0
ER  - 
%0 Journal Article
%A Chady Ghnatios
%A Gérard-Philippe Zéhil
%A Charbel Habchi
%T Modeling of the vane test using a power-law fluid and model order reduction techniques: application to the identification of cement paste properties
%J Comptes Rendus. Mécanique
%D 2021
%P 501-517
%V 349
%N 3
%I Académie des sciences, Paris
%R 10.5802/crmeca.97
%G en
%F CRMECA_2021__349_3_501_0
Chady Ghnatios; Gérard-Philippe Zéhil; Charbel Habchi. Modeling of the vane test using a power-law fluid and model order reduction techniques: application to the identification of cement paste properties. Comptes Rendus. Mécanique, Volume 349 (2021) no. 3, pp. 501-517. doi : 10.5802/crmeca.97. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.97/

[1] T. N. Nguyen; T. T. Nguyen; Withit Pansuk Experiemental study of the punching shear behavior of high performance steel fiber reinforced concrete slabs considering casting directions, Eng. Struct., Volume 131 (2017), pp. 564-573 | DOI

[2] E. Lloret; A. R. Shahab; M. Linus; R. J. Flatt; F. Gramazio; M. Kohler; S. Langenberg Complex concrete structures: Merging existing casting techniques with digital fabrication, Comput. Aided Des., Volume 60 (2015), pp. 40-49 | DOI

[3] M. Chidiac; F. Habibbeigi Modeling the rheological behaviour of fresh concrete: An elasto-viscoplastic finite element approach, Comput. Concr., Volume 2 (2005) no. 2, pp. 97-110 | DOI

[4] M. Sonebi; S. Grunewald; A. Cevik; J. Walraven Modeling fresh properties of self-compacting concrete using neural network technique, Comput. Concr., Volume 18 (2016) no. 4, pp. 903-921 | DOI

[5] A. Mohebbi; M. Shekarchi; M. Mahoutian; S. Mohebbi Modeling the effects of additives on rheological properties of fresh self-consolidating cement paste using artificial neural network, Comput. Concr., Volume 8 (2011) no. 3, pp. 279-292 | DOI

[6] C. Ghnatios; C. H. Mathis; R. Simic; N. D. Spencer; F. Chinesta Modeling soft permeable matter with the proper generalized decomposition (PGD) approach, and verification by means of nanoindentation, Soft Matter, Volume 13 (2017), pp. 4482-4493 | DOI

[7] D. Marquardt An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math., Volume 11 (1963), pp. 431-441 | DOI | MR | Zbl

[8] G. Ovarlez; N. Roussel A physical model for the prediction of lateral stress exerted by self-compacting concrete on formwork, Mater. Struct., Volume 39 (2006), pp. 269-279 | DOI

[9] W. Wang; D. D. Kee; D. Khismatullin Numerical simulation of power law and yield stress fluid flows in double concentric cylinder with slotted rotor and vane geometries, J. Non-Newtonian Fluid Mech., Volume 166 (2011), pp. 734-744 | DOI | Zbl

[10] A. Papo Rheological models for cement pastes, Mater. Struct., Volume 21 (1988), pp. 41-46 | DOI

[11] C. Ferraris Measurement of the rheological properties of high-performance concrete: state of the art report, J. Res. Natl. Inst. Stand. Technol., Volume 104 (1999) no. 5, pp. 461-478 | DOI

[12] C. Jayasree; J. M. Krishnan; R. Gettu Influence of superplasticizer on the non-Newtonian characteristics of cement paste, Mater. Struct., Volume 44 (2011), pp. 929-942 | DOI

[13] M. R. Nivitha; C. Jayasree; J. M. Krishnan Viscoelastic – non-Newtonian transitory response of cement paste and superplasticizer combinations, Third International Conference on Sustainable Construction Materials and Technologies, Kyoto, Japan (2013)

[14] F.-J. Rubio-Hernández Rheological behavior of fresh cement pastes, Fluids, Volume 3 (2018), 106

[15] C. Tao; B. G. Kutchko; E. Rosenbaum; M. Massoudi A review of rheological modeling of cement slurry in oil well applications, Energies, Volume 13 (2020), 570

[16] J. J. Assad; J. Harb; Y. Maalouf Effect of vane configuration on yield stress mmeasurment of cement pastes, J. Non Newtonian Fluid Mech., Volume 230 (2016), pp. 31-42 | DOI

[17] C. Ghnatios; F. Chinesta; C. Binetruy 3D modeling of squeeze flows occuring in composite laminates, Int. J. Mater. Form., Volume 8 (2015) no. 1, pp. 73-83 | DOI

[18] S. Aghighi; A. Ammar; C. Metivier; M. Normandin; F. Chinesta Non incremental transient solution of the Rayleigh-Benard convection model using the PGD, J. Non Newtonian Fluid Mech., Volume 200 (2013), pp. 65-78 | DOI

[19] C. Ghnatios; F. Masson; A. Huerta; E. Cueto; F. Chinesta Proper generalized decomposition based dynamic data-driven of thermal processes, Comput. Methods Appl. Mech. Eng., Volume 213–216 (2012), pp. 29-41 | DOI

[20] J. F. Agassant; P. Avenas; J.-P. Sergent; B. Vergnes; M. Vincent La mise en forme des matires plastiques, Lavoisier, Paris, France, 1996 (ISBN 2-7430-0016-3)

[21] J. Donea; A. Huerta Finite Element Method for Flow Problems, Wiley, West Sussex, England, 2003, 363 pages (ISBN: 9780471496663)

[22] C. Ghnatios; A. Ammar; A. Cimetiere; A. Hamdouni; A. Leygue; F. Chinesta First steps in the space separated representation of models defined in complex domains, ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis (2012), pp. 37-42 | DOI

[23] E. Cueto; C. Ghnatios; F. Chinesta; N. Monte; F. Sanchez; A. Falco Improving computational efficiency in LCM by using computational geometry and model reduction techniques, Key Eng. Mater., Volume 611 (2014), pp. 339-343 | DOI

[24] C. Ghnatios; G. Xu; A. Leygue; M. Visionneau; F. Chinesta; A. Cimetière On the space separated representation when addressing the solution of PDE in complex domains, Discrete Contin. Dyn. Syst. Ser. S, Volume 9 (2016) no. 2, pp. 475-500 | MR

[25] C. Geuzaine; J.-F. Remacle GMSH: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., Volume 11 (2009), pp. 1309-1331 | DOI | MR | Zbl

[26] E. Pruliere; J. Ferec; F. Chinesta; A. Ammar An efficient reduced simulation of residual stresses in composite forming processes, Int. J. Mater. Form., Volume 3 (2010), pp. 1339-1350 | DOI

[27] C. Ghnatios; G.-P. Zehil 3D modeling of the vane test on a power-law cement paste by means of the proper generalized decomposition, XIV International Conference on Computational Plasticity, Fundementals and Applications, Barcelona, Spain (2017)

[28] C. Ghnatios Optimization of composite forming processes using nonlinear thermal models and the proper generalized decomposition, Third International Conference on Advances in Computational Tools for Engineering Applications (ACTEA) (2016), pp. 131-136

[29] A. Safjan Nonlinear structural analysis via reduced basis, Comput. Struct., Volume 29 (1988), pp. 1055-1061 | DOI | Zbl

[30] A. T. Patera; E. M. Ronquist Reduced basis approximation and a posteriori error estimation for a Boltzmann model, Comput. Methods Appl. Mech. Eng., Volume 196 (2007), pp. 2925-2942 | DOI | MR | Zbl

[31] D. Huynh; D. Knezevic; A. Patera Certified reduced basis model validation: a frequentistic uncertainty framework, Comput. Methods Appl. Mech. Eng., Volume 201-204 (2012), pp. 13-24 | DOI | MR | Zbl

[32] F. Chinesta; A. Ammar; E. Cueto Recent advances in the use of the proper generalized decomposition for solving multidimensional models, Arch. Comput. Methods Eng., Volume 17 (2010) no. 4, pp. 327-350 | DOI | MR

[33] T. Hughes The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications, NY, Englewood cliffs, NJ, 2000 | Zbl

[34] T. G. Kolda; B. W. Bader Tensor decompositions and applications, J. Soc. Ind. Appl. Math., Volume 51 (2009) no. 3, pp. 455-500 | MR | Zbl

[35] B. W. Bader; T. G. Kolda Efficient MATLAB computations with sparse and factored tensors, SIAM J. Sci. Comput., Volume 30 (2007) no. 1, pp. 205-231 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Pastes: lubricated and cohesive granular media

Henri Van Damme; Sandrine Mansoutre; Pierre Colombet; ...

C. R. Phys (2002)


A hybrid modeling combining the proper generalized decomposition approach to data-driven model learners, with application to nonlinear biphasic materials

Chady Ghnatios

C. R. Méca (2021)


Knee joint injury risk assessment by means of experimental measurements and proper generalized decomposition

Chady Ghnatios; Ilige Hage; Najib Metni

C. R. Méca (2021)