The first generation of molecular engineering studies whereby a one-dimensional bipolar donor–acceptor conjugated system had served, since the early 1970s, as a quasi-exclusive template, had failed to take into account the tensorial dimension attached to the β quadratic hyperpolarizability tensor. We review here the outgoing second generation of molecular design studies based on three-dimensional multipolar charge transfer which reflects on enhanced values for all βijk coefficients, then opening-up the possibility of polarization-independent nonlinear interactions. This can be ensured by more isotropic crystalline lattices or statistical polymer-based orientational distribution out of reach for the cruder one-dimensional systems. A particular challenge which has in fact triggered this domain in the early 1990s to this day has been set by octupolar systems whereby the symmetry-imposed cancellation of the dipole moment precludes the utilization of an electric field coupling scheme to orient molecules into a noncentrosymmetric order. We will review this new domain, encompassing both physical and chemical considerations, all the way from new molecular engineering techniques, with associated quantum modeling, to advanced characterization methods and macroscopic ordering schemes jointly aiming at promoting and exploiting the so far largely ignored tensorial dimension of nonlinear light–matter coupling schemes in molecules.
Une première génération de recherche en ingénierie moléculaire fondée quasi-exclusivement, depuis les années 70, sur le modèle de la diode moléculaire bipolaire à transfert de charge, ne prenait pas en compte la dimension tensorielle intrinsèquement attachée à la susceptibilité optique quadratique β. Nous faisons ici le point sur une deuxième génération d'études en cours depuis le début de la décennie précédente, qui se traduit en particulier par des valeurs accrues de tous les coefficients βijk, et ouvre la voie à la possibilité d'interactions non linéaires insensibles à la polarisation. De telles configurations sont le résultat de modes d'organisation macroscopique de natures cristalline ou statistique (polymères fonctionnels) plus isotropes et hors de portée des systèmes unidimensionnels moins élaborés. Les systèmes octupolaires, pour lesquels des contraintes strictes de symétrie imposent l'annulation du moment dipolaire, ont posé un défi particulier dans ce contexte, en interdisant le recours aux méthodes traditionnelles d'orientation sous champ électrique pour lever la centrosymétrie au niveau macroscopique. Nous passerons en revue ce nouveau domaine, qui mêle étroitement les considérations physiques et chimiques, en allant des nouveaux schémas d'ingénierie moléculaire et de leurs modèles quantiques associés aux méthodes de caractérisation et d'orientation macroscopiques visant à mettre en valeur la dimensionnalité tensorielle, jusqu'ici largement ignorée, des phénomènes de couplage non linéaire en milieu moléculaire.
Published online:
Mot clés : ingénierie moléculaire, optique non linéaire, octupôles, multipôles, polymères, cristaux moléculaires, dendrimères
Isabelle Ledoux 1; Joseph Zyss 1
@article{CRPHYS_2002__3_4_407_0, author = {Isabelle Ledoux and Joseph Zyss}, title = {Multipolar engineering of molecules and materials for quadratic nonlinear optics}, journal = {Comptes Rendus. Physique}, pages = {407--427}, publisher = {Elsevier}, volume = {3}, number = {4}, year = {2002}, doi = {10.1016/S1631-0705(02)01332-4}, language = {en}, }
Isabelle Ledoux; Joseph Zyss. Multipolar engineering of molecules and materials for quadratic nonlinear optics. Comptes Rendus. Physique, Volume 3 (2002) no. 4, pp. 407-427. doi : 10.1016/S1631-0705(02)01332-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01332-4/
[1] Molecular Nonlinear Optics: Materials, Physics and Devices (J. Zyss, ed.), Academic Press, New York, 1994
[2] Nonlinear Optics of Organic Molecules and Polymers (H. Nalwa; S. Miyata, eds.), CRC Press, New York, 1996
[3] Molecular nonlinear optics: fundamentals and applications (I.C. Khoo; F. Simoni; C. Umeton, eds.), Novel Optical Materials and Applications, 1997, pp. 1-48 (Chapter I)
[4] J. Chem. Phys., 98 (1993), pp. 6583-6599
[5] Nonlinear Opt., 1 (1991), pp. 3-18
[6] J. Chem. Phys., 97 (1992), pp. 5607-5615
[7] J. Nonlinear Phys. Mater., 5 (1996) no. 4, pp. 671-693
[8] J. Chem. Phys., 74 (1981), p. 4800
[9] J. Chem. Phys., 81 (1984), p. 4160
[10] Opt. Lett., 24 (1999) no. 15, pp. 1065-1067
[11] Material for Optoelectronics (M. Quillec, ed.), Kluwer, Dordrecht, 1996, pp. 341-374 (Chapter C-III)
[12] Synth. Metals, 115 (2000), p. 21
[13] J. Opt. Soc. Am. B, 8 (1991) no. 1, p. 27
[14] J. Opt. Soc. Am. B, 11 (1994) no. 12, pp. 2347-2358
[15] Opt. Lett., 12 (1987), p. 57
[16] Chem. Phys. Lett., 219 (1994), p. 349
[17] Opt. Lett., 20 (1995) no. 24, p. 2469
[18] J. Opt. Soc. Am. B, 15 (1998) no. 1, pp. 208-210
[19] C.R. Physique, 3 (2002), p. xxx-yyy
[20] Chem. Phys., 181 (1994), p. 281
[21] Chem. Mater., 8 (1996), p. 890
[22] Chem. Commun. (2000), p. 353
[23] J. Phys. Chem., 97 (1993), p. 9395
[24] Chem. Phys., 245 (1999), p. 1
[25] J. Chem. Phys., 99 (1993), p. 9265
[26] Science, 263 (1994), p. 511
[27] Opt. Mater., 9 (1998) no. 1–4, p. 280
[28] Science, 288 (2000), pp. 119-122
[29] Chem. Phys. Lett., 172 (1990), p. 440
[30] J. Opt. Soc. Am. B, 15 (1998), p. 289
[31] J. Chem. Phys., 97 (1992), p. 5607
[32] J. Nonlinear Opt. Phys. Mater., 5 (1996) no. 4, pp. 671-693
[33] J. Chem. Phys., 116 (2002), p. 9165
[34] J. Zyss, in preparation
[35] Chem. Phys., 245 (1999), p. 243
[36] Chem. Commun. (2001), p. 923
[37] Chem. Mater., 11 (1999), p. 1915
[38] J. Am. Chem. Soc., 120 (1998) no. 11, p. 2563
[39] Chem. Phys. Lett., 206 (1993), p. 409
[40] Chem. Commun., 2083 (1999)
[41] Nature, 374 (1995), p. 339
[42] J. Am. Chem. Soc., 118 (1996), p. 2746
[43] Chem. Phys. Lett., 338 (2001), p. 159
[44] Chem. Phys. Lett., 229 (1994), p. 101
[45] Chem. Commun. (1999), p. 871
[46] Opt. Mater., 12 (1999), p. 333
[47] J. Am. Chem. Soc., 122 (2000), p. 11956
[48] J. Am. Chem. Soc., 116 (1994), p. 10679
[49] J. Phys. Chem. B, 103 (1999), p. 8221
[50] J. Chem. Phys., 108 (1997), p. 7114
[51] J. Am. Chem. Soc., 120 (1998), p. 10921
[52] J. Phys. Chem. B, 103 (1999), p. 4992
[53] Opt. Commun., 13 (1975), p. 10
[54] J. Zyss, D. Yaron, in preparation
[55] J. Chem. Phys., 67 (1977), p. 446
[56] Phys. Rev. Lett., 14 (1965), p. 681
[57] Phys. Rev. A, 26 (1982), p. 2016
[58] Phys. Rev. A, 26 (1982), p. 2028
[59] J. Appl. Phys., 83 (1998) no. 7, pp. 3486-3489
[60] Appl. Phys. Lett., 6 (1992) no. 1, p. 121
[61] Appl. Phys. Lett., 72 (1997), p. 153
[62] Opt. Lett., 25 (2000) no. 23, pp. 1714-1716
[63] Ann. Phys. (Paris), 6 (1951), p. 561
[64] J. Opt. Soc. Am. B, 4 (1987), p. 968
[65] Chem. Phys., 267 (2001) no. 1–3 (See, for example, Special Issue on Laser Control of Quantum Dynamics)
[66] J. Appl. Phys., 48 (1977), p. 2669
[67] Opt. Commun., 80 (1990), p. 149
[68] Adv. Mater., 10 (1998), pp. 1540-1543
[69] C. R. Physique, 3 (2002), p. xxx-yyy
[70] Appl. Phys. Lett., 66 (1995), p. 2019
[71] J. Opt. Soc. Am. B., 15 (1998) no. 2, p. 751
[72] C. R. Physique, 3 (2002), p. xxx-yyy
[73] Chem. Phys., 245 (1999), p. 35
[74] Science, 28 (2000) no. 8, p. 119
[75] J. Appl. Phys., 80 (1996), p. 1773
[76] A.K.Y. Jen, Organic nonlinear optical thin films, in: Proceedings of ICONO'6, Tucson, Arizona, December 2001
[77] J. Am. Chem. Soc., 120 (1998), p. 2563
[78] Chem. Mater., 12 (2000), pp. 1025-1033
[79] J. Zyss, Hypercubic octupolar molecular crystals for quadratic nonlinear optics, in: Proceedings of CLEO 2000, San Francisco, 7–12 May 2000
[80] Chem. Phys. Lett., 206 (1993), p. 409
[81] Adv. Mater., 22 (2001), p. 1677
Cited by Sources:
Comments - Policy