[Le combustible nucléaire : contraintes de conception, évolutions sous irradiation et impacts sur la fin de cycle]
Lieu de la fission et donc de la source d'énergie, le combustible nucléaire constitue l'un des composants les plus critiques des réacteurs. Il présente d'autre part plusieurs caractéristiques prises en compte lors de la conception (génération de puissance thermique, création de produits de fission, contact avec le caloporteur…). Celles-ci évoluent au cours de l'irradiation (dommage d'irradiation, oxydation externe, évolution de composition et de propriétés…). Enfin le comportement après irradiation en réacteur, en particulier lors du transport et de l'entreposage, doit être considéré comme induisant une série de contraintes additionnelles qu'il doit pouvoir subir sans dommage.
En se focalisant sur le cas des combustibles des réacteurs à eau, très largement majoritaires, l'objet de cet article est de décrire les caractéristiques générales du combustible nucléaire et d'en illustrer en détail certains points particuliers.
Nuclear fuel is the material in which the fission reactions occur. As such, it has to support many constraints induced by heat generation, fission product creation, as well as interaction with the coolant. These constraints are taken into account and fulfilled by the design. However, during irradiation, many changes are known to occur. Among them, irradiation damage, OD oxidation and changes in chemical or physical characteristics are to be considered. In addition, intermediate storage adds new constraints that the fuel has to support. With emphasis on the water reactor fuels, by far the most important group, a review will be given of major points, focusing on a few specific areas.
Accepté le :
Publié le :
Mot clés : combustible nucléaire, propriétés d'emploi, effets d'irradiation, thermique, corrosion
Clément Lemaignan 1
@article{CRPHYS_2002__3_7-8_763_0, author = {Cl\'ement Lemaignan}, title = {Nuclear fuels: design constraints, irradiation induced changes and end of cycle impact}, journal = {Comptes Rendus. Physique}, pages = {763--772}, publisher = {Elsevier}, volume = {3}, number = {7-8}, year = {2002}, doi = {10.1016/S1631-0705(02)01361-0}, language = {en}, }
Clément Lemaignan. Nuclear fuels: design constraints, irradiation induced changes and end of cycle impact. Comptes Rendus. Physique, Volume 3 (2002) no. 7-8, pp. 763-772. doi : 10.1016/S1631-0705(02)01361-0. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01361-0/
[1] Le combustible nucléaire des réacteurs à eau sous pression et des réacteurs à neutrons rapides, Eyrolles, Paris, 1996
[2] Microstructure of UO2 in a wide range of BU and temperatures. Impacts on fission gas release mechanisms, West Palm Beach, FL, April 17–21, 1994, ANS (1994), pp. 140-149
[3] Factors governing microstructure development of Cr2O3-doped UO2 during sintering, J. Nucl. Mater., Volume 297 (2001), pp. 313-326
[4] Nucl. Instrum. Meth. B, 141 (1998), p. 372
[5] et al. J. Nucl. Mater., 166 (1989), p. 165
[6] J. Nucl. Mater., 188 (1992), p. 65
[7] J. Nucl. Mater., 226 (1995), p. 302
[8] MOX fuel experience in french power plants, Int. Topical Meeting on LWR Fuel Performance, West Palm Beach, FL, ANS (1994), pp. 718-725
[9] J. Nucl. Mater., 159 (1988), p. 190
[10] Influence of iron in the nucleation of 〈c〉 component dislocation loops in irradiated Zircaloy-4, 11th International Symposium on Zirconium in the Nuclear Industry, Garmisch-Partenkirchen, FRG (ASTM-STP), Volume 1295 (1996), pp. 638-653
[11] The use of 2.5-D electron microscopy to study dislocation channeling effects in irradiated Zry, Las Vegas, AR, Metal. Soc. AIME (1982), pp. 115-124
[12] Scr. Metallurgica, 10 (1976), p. 411
[13] C. Regnard, B. Verhaeghe, F. Lefebvre-Joud, C. Lemaignan, Activated slip systems and localized straining of irradiated Zr alloys in circumferential leadings, in: Zirconium in the Nuclear Industry, Thirteenth International Symposium, Annecy, France, June 11–14, 2001, ASTM STP 1423, in press
[14] Meeting the challenge of managing nuclear fuel in a competitive environment, Int. Topical Meeting on Light Water Reactor Fuel Performance, Portland, OR, March 2–6, 1997, ANS, 1997, pp. 3-10
[15] A review of recent LWR fuel failures, Dimitrovgrad, Russian Fed., IAEA (1993), p. 17
[16] Overview of fuel sipping in French power plants, Williamsburg, VA (1988)
[17] et al. WWER 1000 and WWER 440 fuel operation experience, Int. Topical Meeting on LWR Fuel Performance, West Palm Beach, FL, ANS (1994), pp. 31-44
[18] et al. Westinghouse fuel performance in today's aggressive plant operating environment, Int. Topical Meeting on Light Water Reactor Fuel Performance, Portland, OR, March 2–6, 1997, ANS (1997), pp. 23-30
[19] Siemens fuel performence overview, Int. Topical Meeting on Light Water Reactor Fuel Performance, Portland, OR, March 2–6, 1997, ANS (1997), pp. 272-279
[20] et al. Framatome and FCF recent operationg experience and advanced features to increase performance and reliability, Int. Topical Meeting on Light Water Reactor Fuel Performance, Portland, OR, March 2–6, 1997, ANS (1997), pp. 31-36
[21] R.B. Adamson, S.P. Lynch, J.S. Davies, Hot cell observation of shadow corrosion phenomena, Fachtagung des KTG Fachgruppe: Brennelemente und Kernbauteile, KFK, FRG, March 2000
Cité par Sources :
Commentaires - Politique