[Force dynamique des membranes fluides]
Rupturing fluid membrane vesicles with a steady ramp of micropipette suction yields a tension distribution that images the kinetic process of membrane failure. When plotted on a log scale of tension loading rate, the distribution peaks (membrane strengths) define a dynamic tension spectrum with distinct regimes that reflect passage of prominent energy barriers along the pathway to rupture. Demonstrated here by tests on giant PC lipid vesicles over loading rates from 0.06–60 mN/m/s, the stochastic process of rupture can be modelled as a causal sequence of two thermally-activated transitions where each transition governs membrane strength on separate scales of loading rate. Under fast ramps of tension, a steep linear regime appears in each spectrum at high strengths which implies that failure requires nucleation of a rare nanoscale defect. The slope and projected intercept yield defect size and spontaneous production rate respectively. However, under slow ramps of loading, the spectrum crosses over to a shallow-curved regime at lower strength, which is consistent with the kinetic impedance to opening an unstable hole in a fluid film. The dependence of rupture tension on rate reveals hole edge energy and frequency scale for thermal fluctuations in size.
La rupture de vésicules membranaires fluides sous différentes rampes de succion appliquées à l'aide de micropipettes génère des distributions de tension qui révèlent un processus cinétique de rupture membranaire. Le spectre dynamique exprimant la tension de rupture en fonction de la vitesse de succion (taux de charge) en échelle logarithmique met en évidence les barrières d'énergie qui empêchent la rupture et limitent la perméation spontanée. Les expériences réalisées sur des vésicules lipidiques géantes pour des taux de charge de 0,06–60 mN/m/s montrent que la résistance de la membrane est gouvernée par deux transitions thermiquement activées. Pour les résistances les plus élevées sous des vitesses de succion rapides, un régime linéaire dans le spectre est dominé par une nucléation initiale de défauts à une échelle nanoscopique. La pente et l'intersection avec l'axe des abscisses permettent de déduire respectivement de la taille du défaut et de la vitesse spontanée. A de plus faibles tensions de rupture sous de faibles taux de charge, un régime de faible courbure dans le spectre est dominé par le processus mésoscopique d'ouverture d'un pore pour lequel l'échelle des tensions révèle une énergie de ligne.
Mots-clés : Rupture et perméation des membranes, Barrière d'énergie-tension de rupture, Spectroscopie de la tension dynamique
Evan Evans 1, 2 ; Volkmar Heinrich 2
@article{CRPHYS_2003__4_2_265_0, author = {Evan Evans and Volkmar Heinrich}, title = {Dynamic strength of fluid membranes}, journal = {Comptes Rendus. Physique}, pages = {265--274}, publisher = {Elsevier}, volume = {4}, number = {2}, year = {2003}, doi = {10.1016/S1631-0705(03)00044-6}, language = {en}, }
Evan Evans; Volkmar Heinrich. Dynamic strength of fluid membranes. Comptes Rendus. Physique, Volume 4 (2003) no. 2, pp. 265-274. doi : 10.1016/S1631-0705(03)00044-6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00044-6/
[1] J. Phys. Chem., 91 (1987), pp. 4219-4228
[2] Quart. Rev. Biophys., 24 (1991), pp. 293-397
[3] Biophys. J., 58 (1990), pp. 997-1009
[4] Biophys. J., 64 (1993), pp. 435-442
[5] Biophys. J., 64 (1993), pp. 443-453
[6] Biophys. J., 79 (2000), pp. 321-327
[7] Bioelectrochem. Bioenerg., 6 (1979), pp. 37-52
[8] Bioelectrochem. Bioenerg., 21 (1991), pp. 163-182
[9] Biochim. Biophys. Acta, 812 (1985), pp. 643-655
[10] Biochim. Biophys. Acta, 902 (1987), pp. 360-373
[11] Biochim. Biophys. Acta, 940 (1988), pp. 275-287
[12] Z. Naturforsch. Teil A, 34 (1979), pp. 1063-1065
[13] Biochim. Biophys. Acta, 1147 (1993), pp. 89-104
[14] Proc. Nat. Acad. Sci. USA, 96 (1999), pp. 10591-10596
[15] Physica A, 278 (2000), pp. 32-51
[16] Biochem., 27 (1988), pp. 4668-4673
[17] Biophys. J., 35 (1981), pp. 637-652
[18] Kolloidn. Zh., 24 (1962), pp. 370-374
[19] Acta Physicochim. URSS, 18 (1943), pp. 1-22
[20] Phys. Lett. A, 50 (1974), pp. 115-116
[21] Biophys. J., 80 (2001), pp. 1829-1836
[22] Physica (Utrecht), 7 (1940), pp. 284-304
[23] Rev. Mod. Phys., 62 (1990), pp. 251-342
[24] Biophys. J., 79 (2000), pp. 328-339
- Quantifying uncertainty in trans-membrane stresses and moments in simulation, Biophysical Approaches for the Study of Membrane Structure—Part B: Theory and Simulations, Volume 701 (2024), p. 83 | DOI:10.1016/bs.mie.2024.04.008
- The Role of Key Amino Acids in the Antimicrobial Mechanism of a Bacteriocin Model Revealed by Molecular Simulations, Journal of Chemical Information and Modeling, Volume 61 (2021) no. 12, p. 6066 | DOI:10.1021/acs.jcim.1c00838
- Heterogeneous oxidization of graphene nanosheets damages membrane, Science China Physics, Mechanics Astronomy, Volume 62 (2019) no. 6 | DOI:10.1007/s11433-018-9317-7
- Localizing the Nanodeformation Impact of Magnetic Nanoparticles on Macromolecular Objects by Physical and Biochemical Means, Bulletin of the Russian Academy of Sciences: Physics, Volume 82 (2018) no. 9, p. 1073 | DOI:10.3103/s1062873818090095
- Cholesterol suppresses membrane leakage by decreasing water penetrability, Soft Matter, Volume 14 (2018) no. 25, p. 5277 | DOI:10.1039/c8sm00644j
- Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine, Journal of Nanoparticle Research, Volume 19 (2017) no. 2 | DOI:10.1007/s11051-017-3746-5
- How the Incorporation of Pluronic Block Copolymers Modulates the Response of Lipid Membranes to Mechanical Stress, Langmuir, Volume 33 (2017) no. 46, p. 13284 | DOI:10.1021/acs.langmuir.7b02244
- Membrane pore formation in atomistic and coarse-grained simulations, Biochimica et Biophysica Acta (BBA) - Biomembranes, Volume 1858 (2016) no. 10, p. 2266 | DOI:10.1016/j.bbamem.2015.12.031
- New insights into shear-sensitivity in dinoflagellate microalgae, Bioresource Technology, Volume 200 (2016), p. 699 | DOI:10.1016/j.biortech.2015.10.105
- Molecular dynamics simulations of lipid membranes with lateral force: Rupture and dynamic properties, Biochimica et Biophysica Acta (BBA) - Biomembranes, Volume 1838 (2014) no. 3, p. 994 | DOI:10.1016/j.bbamem.2013.12.011
- Giant Vesicles, Advances in Planar Lipid Bilayers and Liposomes Volume 16, Volume 16 (2012), p. 1 | DOI:10.1016/b978-0-12-396534-9.00001-5
- Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane, Biochimica et Biophysica Acta (BBA) - Biomembranes, Volume 1818 (2012) no. 9, p. 2271 | DOI:10.1016/j.bbamem.2012.05.006
- Membrane Electroporation in High Electric Fields, Advances in Electrochemical Science and Engineering, Volume 13 (2011), p. 335 | DOI:10.1002/9783527644117.ch7
- Effect of membrane tension on the electric field and dipole potential of lipid bilayer membrane, Biochimica et Biophysica Acta (BBA) - Biomembranes, Volume 1808 (2011) no. 10, p. 2608 | DOI:10.1016/j.bbamem.2011.06.010
- Chitosan as Stabilizer and Carrier of Natural Based Nanostructures, Nanocosmetics and Nanomedicines (2011), p. 163 | DOI:10.1007/978-3-642-19792-5_8
- Defect-Mediated Trafficking across Cell Membranes: Insights from in Silico Modeling, Chemical Reviews, Volume 110 (2010) no. 10, p. 6077 | DOI:10.1021/cr1000783
- Molecular dynamics simulations of rupture in lipid bilayers, Experimental Biology and Medicine, Volume 235 (2010) no. 2, p. 181 | DOI:10.1258/ebm.2009.009187
- Mechanical Properties of Coarse-Grained Bilayers Formed by Cardiolipin and Zwitterionic Lipids, Journal of Chemical Theory and Computation, Volume 6 (2010) no. 5, p. 1638 | DOI:10.1021/ct900654e
- Wrinkling and electroporation of giant vesicles in the gel phase, Soft Matter, Volume 6 (2010) no. 9, p. 1990 | DOI:10.1039/b925929e
- Nucleation theory with delayed interactions: An application to the early stages of the receptor-mediated adhesion/fusion kinetics of lipid vesicles, The Journal of Chemical Physics, Volume 132 (2010) no. 4 | DOI:10.1063/1.3290823
- Determining the Local Shear Viscosity of a Lipid Bilayer System by Reverse Non‐Equilibrium Molecular Dynamics Simulations, ChemPhysChem, Volume 10 (2009) no. 13, p. 2305 | DOI:10.1002/cphc.200900156
- Elasticity Mapping of Pore‐Suspending Native Cell Membranes, Small, Volume 5 (2009) no. 7, p. 832 | DOI:10.1002/smll.200800930
- The freezing process of small lipid vesicles at molecular resolution, Soft Matter, Volume 5 (2009) no. 22, p. 4531 | DOI:10.1039/b913210d
- Free energies of stable and metastable pores in lipid membranes under tension, The Journal of Chemical Physics, Volume 131 (2009) no. 20 | DOI:10.1063/1.3266839
- Estimation of Mechanical Strength of Unilamellar and Multilamellar AOT/Water Vesicles and Their Rupture Using Micropipet Aspiration, The Journal of Physical Chemistry B, Volume 113 (2009) no. 42, p. 13805 | DOI:10.1021/jp902909z
- Mechanosensitive Membrane Channels in Action, Biophysical Journal, Volume 94 (2008) no. 8, p. 2994 | DOI:10.1529/biophysj.107.119966
- Interaction of Particles with Membranes, Particle Toxicology (2006), p. 139 | DOI:10.1201/9781420003147.ch7
- Surface Viscosity, Diffusion, and Intermonolayer Friction: Simulating Sheared Amphiphilic Bilayers, Biophysical Journal, Volume 89 (2005) no. 2, p. 823 | DOI:10.1529/biophysj.105.062653
- Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers, Biophysical Journal, Volume 86 (2004) no. 4, p. 2156 | DOI:10.1016/s0006-3495(04)74275-7
- Peeling kinetics of giant multilamellar vesicles on a solid–liquid interface, Chemical Physics Letters, Volume 396 (2004) no. 4-6, p. 303 | DOI:10.1016/j.cplett.2004.08.044
- Nucleation free energy of pore formation in an amphiphilic bilayer studied by molecular dynamics simulations, The Journal of Chemical Physics, Volume 121 (2004) no. 23, p. 12060 | DOI:10.1063/1.1815296
- Coarse Grained Model for Semiquantitative Lipid Simulations, The Journal of Physical Chemistry B, Volume 108 (2004) no. 2, p. 750 | DOI:10.1021/jp036508g
Cité par 32 documents. Sources : Crossref
Commentaires - Politique