Comptes Rendus
Hydrodynamics and physics of soft objects/Hydrodynamique et physique des objets mous
Dynamic strength of fluid membranes
[Force dynamique des membranes fluides]
Comptes Rendus. Physique, Volume 4 (2003) no. 2, pp. 265-274.

Rupturing fluid membrane vesicles with a steady ramp of micropipette suction yields a tension distribution that images the kinetic process of membrane failure. When plotted on a log scale of tension loading rate, the distribution peaks (membrane strengths) define a dynamic tension spectrum with distinct regimes that reflect passage of prominent energy barriers along the pathway to rupture. Demonstrated here by tests on giant PC lipid vesicles over loading rates from 0.06–60 mN/m/s, the stochastic process of rupture can be modelled as a causal sequence of two thermally-activated transitions where each transition governs membrane strength on separate scales of loading rate. Under fast ramps of tension, a steep linear regime appears in each spectrum at high strengths which implies that failure requires nucleation of a rare nanoscale defect. The slope and projected intercept yield defect size and spontaneous production rate respectively. However, under slow ramps of loading, the spectrum crosses over to a shallow-curved regime at lower strength, which is consistent with the kinetic impedance to opening an unstable hole in a fluid film. The dependence of rupture tension on rate reveals hole edge energy and frequency scale for thermal fluctuations in size.

La rupture de vésicules membranaires fluides sous différentes rampes de succion appliquées à l'aide de micropipettes génère des distributions de tension qui révèlent un processus cinétique de rupture membranaire. Le spectre dynamique exprimant la tension de rupture en fonction de la vitesse de succion (taux de charge) en échelle logarithmique met en évidence les barrières d'énergie qui empêchent la rupture et limitent la perméation spontanée. Les expériences réalisées sur des vésicules lipidiques géantes pour des taux de charge de 0,06–60 mN/m/s montrent que la résistance de la membrane est gouvernée par deux transitions thermiquement activées. Pour les résistances les plus élevées sous des vitesses de succion rapides, un régime linéaire dans le spectre est dominé par une nucléation initiale de défauts à une échelle nanoscopique. La pente et l'intersection avec l'axe des abscisses permettent de déduire respectivement de la taille du défaut et de la vitesse spontanée. A de plus faibles tensions de rupture sous de faibles taux de charge, un régime de faible courbure dans le spectre est dominé par le processus mésoscopique d'ouverture d'un pore pour lequel l'échelle des tensions révèle une énergie de ligne.

Publié le :
DOI : 10.1016/S1631-0705(03)00044-6
Keywords: Membrane rupture and permeation, Edge energy-line tension, Dynamic tension spectroscopy
Mots-clés : Rupture et perméation des membranes, Barrière d'énergie-tension de rupture, Spectroscopie de la tension dynamique

Evan Evans 1, 2 ; Volkmar Heinrich 2

1 Departments of Physics and Pathology, University of British Columbia, Vancouver V6T 1Z1, BC, Canada
2 Departments of Biomedical Engineering and Physics, Boston University, Boston, MA 02215, USA
@article{CRPHYS_2003__4_2_265_0,
     author = {Evan Evans and Volkmar Heinrich},
     title = {Dynamic strength of fluid membranes},
     journal = {Comptes Rendus. Physique},
     pages = {265--274},
     publisher = {Elsevier},
     volume = {4},
     number = {2},
     year = {2003},
     doi = {10.1016/S1631-0705(03)00044-6},
     language = {en},
}
TY  - JOUR
AU  - Evan Evans
AU  - Volkmar Heinrich
TI  - Dynamic strength of fluid membranes
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 265
EP  - 274
VL  - 4
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-0705(03)00044-6
LA  - en
ID  - CRPHYS_2003__4_2_265_0
ER  - 
%0 Journal Article
%A Evan Evans
%A Volkmar Heinrich
%T Dynamic strength of fluid membranes
%J Comptes Rendus. Physique
%D 2003
%P 265-274
%V 4
%N 2
%I Elsevier
%R 10.1016/S1631-0705(03)00044-6
%G en
%F CRPHYS_2003__4_2_265_0
Evan Evans; Volkmar Heinrich. Dynamic strength of fluid membranes. Comptes Rendus. Physique, Volume 4 (2003) no. 2, pp. 265-274. doi : 10.1016/S1631-0705(03)00044-6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00044-6/

[1] E. Evans; D. Needham J. Phys. Chem., 91 (1987), pp. 4219-4228

[2] M. Bloom; E. Evans; O.G. Mouritsen Quart. Rev. Biophys., 24 (1991), pp. 293-397

[3] D. Needham; R.S. Nunn Biophys. J., 58 (1990), pp. 997-1009

[4] F.R. Hallett; J. Marsh; B.G. Nickle; J.M. Wood Biophys. J., 64 (1993), pp. 435-442

[5] B.L.-S. Mui; P.R. Cullis; E.A. Evans; T.D. Madden Biophys. J., 64 (1993), pp. 443-453

[6] K. Olbrich; W. Rawicz; D. Needham; E. Evans Biophys. J., 79 (2000), pp. 321-327

[7] I.G. Abidor; V.B. Arakelyan; L.V. Chernomordik; Y.A. Chizmadzhev; V.F. Pastushenko; M.R. Tarasevich Bioelectrochem. Bioenerg., 6 (1979), pp. 37-52

[8] A. Barnett; J. Weaver Bioelectrochem. Bioenerg., 21 (1991), pp. 163-182

[9] L.V. Chernomordik; M.M. Kozlov; G.B. Melikyan; I.G. Abidor; V.S. Markin; Y.A. Chizmadzhev Biochim. Biophys. Acta, 812 (1985), pp. 643-655

[10] L.V. Chernomordik; S.I. Sukharev; S.V. Popov; V.F. Pastushenko; A.V. Sokirko; I.G. Abidor; Y.A. Chizmadzhev Biochim. Biophys. Acta, 902 (1987), pp. 360-373

[11] R.W. Glaser; S.L. Leikin; L.V. Chernomordik; V.F. Pastushenko; A.I. Sokirko Biochim. Biophys. Acta, 940 (1988), pp. 275-287

[12] W. Harbich; W. Helfrich Z. Naturforsch. Teil A, 34 (1979), pp. 1063-1065

[13] D.V. Zhelev; D. Needham Biochim. Biophys. Acta, 1147 (1993), pp. 89-104

[14] O. Sandre; L. Moreaux; F. Brochard-Wyart Proc. Nat. Acad. Sci. USA, 96 (1999), pp. 10591-10596

[15] F. Brochard-Wyart; P.G. de Gennes; O. Sandre Physica A, 278 (2000), pp. 32-51

[16] D. Needham; T.J. McIntosh; E. Evans Biochem., 27 (1988), pp. 4668-4673

[17] R. Kwok; E. Evans Biophys. J., 35 (1981), pp. 637-652

[18] B.V. Deryagin; Y.V. Gutop Kolloidn. Zh., 24 (1962), pp. 370-374

[19] J.B. Zeldovich Acta Physicochim. URSS, 18 (1943), pp. 1-22

[20] W. Helfrich Phys. Lett. A, 50 (1974), pp. 115-116

[21] K.C. Melikov; V.A. Frolov; A. Shcherbakov; A.V. Samsonov; Y.A. Chizmadzhev; L.V. Chernomordik Biophys. J., 80 (2001), pp. 1829-1836

[22] H.A. Kramers Physica (Utrecht), 7 (1940), pp. 284-304

[23] P. Hanggi; P. Talkner; M. Borkovec Rev. Mod. Phys., 62 (1990), pp. 251-342

[24] W. Rawicz; K. Olbrich; T. McIntosh; D. Needham; E. Evans Biophys. J., 79 (2000), pp. 328-339

  • Samuel L. Foley; Markus Deserno Quantifying uncertainty in trans-membrane stresses and moments in simulation, Biophysical Approaches for the Study of Membrane Structure—Part B: Theory and Simulations, Volume 701 (2024), p. 83 | DOI:10.1016/bs.mie.2024.04.008
  • Víctor L. Cruz; Javier Ramos; Javier Martinez-Salazar; Manuel Montalban-Lopez; Mercedes Maqueda The Role of Key Amino Acids in the Antimicrobial Mechanism of a Bacteriocin Model Revealed by Molecular Simulations, Journal of Chemical Information and Modeling, Volume 61 (2021) no. 12, p. 6066 | DOI:10.1021/acs.jcim.1c00838
  • QianChun Wang; XiaoBo Zhai; Michael Crowe; Lu Gou; YinFeng Li; DeChang Li; Lei Zhang; JiaJie Diao; BaoHua Ji Heterogeneous oxidization of graphene nanosheets damages membrane, Science China Physics, Mechanics Astronomy, Volume 62 (2019) no. 6 | DOI:10.1007/s11433-018-9317-7
  • Yu. I. Golovin; Al. O. Zhigachev; N. L. Klyachko; A. V. Kabanov Localizing the Nanodeformation Impact of Magnetic Nanoparticles on Macromolecular Objects by Physical and Biochemical Means, Bulletin of the Russian Academy of Sciences: Physics, Volume 82 (2018) no. 9, p. 1073 | DOI:10.3103/s1062873818090095
  • Bing Bu; Michael Crowe; Jiajie Diao; Baohua Ji; Dechang Li Cholesterol suppresses membrane leakage by decreasing water penetrability, Soft Matter, Volume 14 (2018) no. 25, p. 5277 | DOI:10.1039/c8sm00644j
  • Yuri I. Golovin; Natalia L. Klyachko; Alexander G. Majouga; Marina Sokolsky; Alexander V. Kabanov Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine, Journal of Nanoparticle Research, Volume 19 (2017) no. 2 | DOI:10.1007/s11051-017-3746-5
  • Afroditi Maria Zaki; Paola Carbone How the Incorporation of Pluronic Block Copolymers Modulates the Response of Lipid Membranes to Mechanical Stress, Langmuir, Volume 33 (2017) no. 46, p. 13284 | DOI:10.1021/acs.langmuir.7b02244
  • Sonja A. Kirsch; Rainer A. Böckmann Membrane pore formation in atomistic and coarse-grained simulations, Biochimica et Biophysica Acta (BBA) - Biomembranes, Volume 1858 (2016) no. 10, p. 2266 | DOI:10.1016/j.bbamem.2015.12.031
  • J.J. Gallardo-Rodríguez; L. López-Rosales; A. Sánchez-Mirón; F. García-Camacho; E. Molina-Grima; J.J. Chalmers New insights into shear-sensitivity in dinoflagellate microalgae, Bioresource Technology, Volume 200 (2016), p. 699 | DOI:10.1016/j.biortech.2015.10.105
  • Jun Yu Xie; Guang Hong Ding; Mikko Karttunen Molecular dynamics simulations of lipid membranes with lateral force: Rupture and dynamic properties, Biochimica et Biophysica Acta (BBA) - Biomembranes, Volume 1838 (2014) no. 3, p. 994 | DOI:10.1016/j.bbamem.2013.12.011
  • Rumiana Dimova Giant Vesicles, Advances in Planar Lipid Bilayers and Liposomes Volume 16, Volume 16 (2012), p. 1 | DOI:10.1016/b978-0-12-396534-9.00001-5
  • A. Srinivas Reddy; Dora Toledo Warshaviak; Mirianas Chachisvilis Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane, Biochimica et Biophysica Acta (BBA) - Biomembranes, Volume 1818 (2012) no. 9, p. 2271 | DOI:10.1016/j.bbamem.2012.05.006
  • Rumiana Dimova Membrane Electroporation in High Electric Fields, Advances in Electrochemical Science and Engineering, Volume 13 (2011), p. 335 | DOI:10.1002/9783527644117.ch7
  • Dora Toledo Warshaviak; Michael J. Muellner; Mirianas Chachisvilis Effect of membrane tension on the electric field and dipole potential of lipid bilayer membrane, Biochimica et Biophysica Acta (BBA) - Biomembranes, Volume 1808 (2011) no. 10, p. 2608 | DOI:10.1016/j.bbamem.2011.06.010
  • Maria I. Z. Lionzo; Aline C. Dressler; Omar Mertins; Adriana R. Pohlmann; Nádya P. da Silveira Chitosan as Stabilizer and Carrier of Natural Based Nanostructures, Nanocosmetics and Nanomedicines (2011), p. 163 | DOI:10.1007/978-3-642-19792-5_8
  • Andrey A. Gurtovenko; Jamshed Anwar; Ilpo Vattulainen Defect-Mediated Trafficking across Cell Membranes: Insights from in Silico Modeling, Chemical Reviews, Volume 110 (2010) no. 10, p. 6077 | DOI:10.1021/cr1000783
  • Michael D Tomasini; Carlos Rinaldi; M Silvina Tomassone Molecular dynamics simulations of rupture in lipid bilayers, Experimental Biology and Medicine, Volume 235 (2010) no. 2, p. 181 | DOI:10.1258/ebm.2009.009187
  • Martin Dahlberg; Arnold Maliniak Mechanical Properties of Coarse-Grained Bilayers Formed by Cardiolipin and Zwitterionic Lipids, Journal of Chemical Theory and Computation, Volume 6 (2010) no. 5, p. 1638 | DOI:10.1021/ct900654e
  • Roland L. Knorr; Margarita Staykova; Rubèn Serral Gracià; Rumiana Dimova Wrinkling and electroporation of giant vesicles in the gel phase, Soft Matter, Volume 6 (2010) no. 9, p. 1990 | DOI:10.1039/b925929e
  • Antonio Raudino; Martina Pannuzzo Nucleation theory with delayed interactions: An application to the early stages of the receptor-mediated adhesion/fusion kinetics of lipid vesicles, The Journal of Chemical Physics, Volume 132 (2010) no. 4 | DOI:10.1063/1.3290823
  • Thomas J. Müller; Florian Müller‐Plathe Determining the Local Shear Viscosity of a Lipid Bilayer System by Reverse Non‐Equilibrium Molecular Dynamics Simulations, ChemPhysChem, Volume 10 (2009) no. 13, p. 2305 | DOI:10.1002/cphc.200900156
  • Bärbel Lorenz; Ingo Mey; Siegfried Steltenkamp; Tamir Fine; Christina Rommel; Martin Michael Müller; Alexander Maiwald; Joachim Wegener; Claudia Steinem; Andreas Janshoff Elasticity Mapping of Pore‐Suspending Native Cell Membranes, Small, Volume 5 (2009) no. 7, p. 832 | DOI:10.1002/smll.200800930
  • H. Jelger Risselada; Siewert J. Marrink The freezing process of small lipid vesicles at molecular resolution, Soft Matter, Volume 5 (2009) no. 22, p. 4531 | DOI:10.1039/b913210d
  • Wouter K. den Otter Free energies of stable and metastable pores in lipid membranes under tension, The Journal of Chemical Physics, Volume 131 (2009) no. 20 | DOI:10.1063/1.3266839
  • G. Hema Sagar; Jayesh R. Bellare Estimation of Mechanical Strength of Unilamellar and Multilamellar AOT/Water Vesicles and Their Rupture Using Micropipet Aspiration, The Journal of Physical Chemistry B, Volume 113 (2009) no. 42, p. 13805 | DOI:10.1021/jp902909z
  • Serge Yefimov; Erik van der Giessen; Patrick R. Onck; Siewert J. Marrink Mechanosensitive Membrane Channels in Action, Biophysical Journal, Volume 94 (2008) no. 8, p. 2994 | DOI:10.1529/biophysj.107.119966
  • Peter Gehr; Barbara Rothen-Rutishauser; Samuel Sch√ºrch Interaction of Particles with Membranes, Particle Toxicology (2006), p. 139 | DOI:10.1201/9781420003147.ch7
  • S.A. Shkulipa; W.K. den Otter; W.J. Briels Surface Viscosity, Diffusion, and Intermonolayer Friction: Simulating Sheared Amphiphilic Bilayers, Biophysical Journal, Volume 89 (2005) no. 2, p. 823 | DOI:10.1529/biophysj.105.062653
  • Hari Leontiadou; Alan E. Mark; Siewert J. Marrink Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers, Biophysical Journal, Volume 86 (2004) no. 4, p. 2156 | DOI:10.1016/s0006-3495(04)74275-7
  • Tsutomu Hamada; Kenichi Yoshikawa Peeling kinetics of giant multilamellar vesicles on a solid–liquid interface, Chemical Physics Letters, Volume 396 (2004) no. 4-6, p. 303 | DOI:10.1016/j.cplett.2004.08.044
  • T. V. Tolpekina; W. K. den Otter; W. J. Briels Nucleation free energy of pore formation in an amphiphilic bilayer studied by molecular dynamics simulations, The Journal of Chemical Physics, Volume 121 (2004) no. 23, p. 12060 | DOI:10.1063/1.1815296
  • Siewert J. Marrink; Alex H. de Vries; Alan E. Mark Coarse Grained Model for Semiquantitative Lipid Simulations, The Journal of Physical Chemistry B, Volume 108 (2004) no. 2, p. 750 | DOI:10.1021/jp036508g

Cité par 32 documents. Sources : Crossref

Commentaires - Politique