[Fiabilité des diodes laser : défauts cristallins et modes de dégradation]
L'analyse de la dégradation est fondamentale pour l'optimisation des diodes lasers de puissance. La dégradation des lasers se présente sous trois modes : rapide, graduelle et catastrophique. Elle peut se produire à l'intérieur de la cavité ou au voisinage des facettes. Chaque mode de dégradation présente sa propre signature et des défauts cristallins différents sont associés à chacun de ces modes. Les principaux mécanismes de dégradation sont analysés en montrant les relations entre les modes de dégradation, les propriétés des matériaux et la structure des lasers.
Degradation analysis is a crucial issue for the improvement of high power laser diodes. Degradation occurs in three different modes: rapid, gradual and catastrophic. It can be located inside the cavity or at the facet mirrors. Each type of degradation presents its own signature and different crystal defects appear associated with them. The main physical mechanisms responsible for laser degradation are analysed showing the relation between the main degradation modes and the different materials properties of the laser structures.
Accepté le :
Publié le :
Mot clés : Dégradation, Dégradation catastrophique, Défauts lignes noires, Défauts points noirs, Recombinaison, Montée de dislocations, Glissement de dislocations
Juan Jiménez 1
@article{CRPHYS_2003__4_6_663_0, author = {Juan Jim\'enez}, title = {Laser diode reliability: crystal defects and degradation modes}, journal = {Comptes Rendus. Physique}, pages = {663--673}, publisher = {Elsevier}, volume = {4}, number = {6}, year = {2003}, doi = {10.1016/S1631-0705(03)00097-5}, language = {en}, }
Juan Jiménez. Laser diode reliability: crystal defects and degradation modes. Comptes Rendus. Physique, Volume 4 (2003) no. 6, pp. 663-673. doi : 10.1016/S1631-0705(03)00097-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00097-5/
[1] A brief history of high power semiconductor lasers, IEEE J. Selected Topics Quantum Electron., Volume 6 (2000), p. 1470
[2] , Semiconductors and Semimetals, 22, 1985 (Part A, Chapter 6, p. 379)
[3] Diode laser degradation mechanisms: a review, Prog. Quant. Electr., Volume 15 (1992), pp. 153-174
[4] Reliability and Degradation of Semiconductors Lasers and LEDs, Artech House, Boston, 1991
[5] Optical strength of semiconductor laser materials, Prog. Quant. Electr., Volume 20 (1996) no. 1, p. 1
[6] Reliability and Degradation of III-V Optical Devices, Artech House, Boston, 1996
[7] Temperature, stress, disorder, and crystallization effects in laser diodes: measurements and impacts, SPIE, Volume 3001 (1997), p. 13
[8] Material and fabrication related limitations to high power operation of GaAs/AlGaAs and InGaAs/AlGaAs laser diodes, Mater. Sci. Eng. B, Volume 44 (1997), p. 359
[9] Estimation of the reliability of 0.98 μm InGaAs/AlGaAs strained quantum well lasers, J. Appl. Phys., Volume 72 (1992), p. 2119
[10] Direct evidence for group III atoms migration in aged 980 nm InGaAs/AlGaAs pump lasers, Phys. Status Solidi B, Volume 195 (2003), p. 159
[11] The origin of dislocation climb during laser operation, Appl. Phys. Lett., Volume 30 (1977), p. 368
[12] Dislocation climb model in compound semiconductors with zinc-blende structure, Appl. Phys. Lett., Volume 29 (1976), p. 461
[13] Vacancy controlled model of degradation in InGaAs/AlGaAs/GaAs heterostructure lasers, J. Appl. Phys., Volume 76 (1994), p. 4068
[14] Recombination enhanced defect reactions, Sol. St. Electron., Volume 21 (1978), p. 1391
[15] Dark line resistant diode laser at 0.8 μm comprising InAlGaAs strained quantum well, IEEE Photon Technol. Lett., Volume 3 (1991), p. 409
[16] Injection-enhanced dislocation glide under uniaxial stress in GaAs-(GaAl)As double heterostructure laser, Jpn. J. Appl. Phys., Volume 16 (1977), p. 233
[17] High-temperature degradation of InGaAsP/InP light emitting diodes, J. Appl. Phys., Volume 52 (1981), p. 5377
[18] Lattice defect structure of degraded InGaAsP-InP double-heterostructure lasers, Appl. Phys. Lett., Volume 40 (1982), p. 16
[19] Dark defects in InGaAsP/InP double heterostructure lasers under accelerated aging, J. Appl. Phys., Volume 54 (1983), p. 1246
[20] Deep level spectroscopy of high-power laser diode arrays, J. Appl. Phys., Volume 84 (1998), p. 1325
[21] Kinetic model for gradual degradation in semiconductor lasers and light emitting diodes, Appl. Phys. Lett., Volume 53 (1988), p. 2135
[22] Electron microscopy of life tested semiconductor laser diodes, Micron., Volume 31 (2000), p. 259
[23] Optical and structural analysis of degraded high power InGaAlAs/AlGaAs lasers, Mater. Sci. Eng. B, Volume 66 (1999), p. 209
[24] Microprobe Characterization of Semiconductors (J. Jiménez, ed.), Taylor and Francis, New York, 2002 (Chapter 1)
[25] Optically induced catastrophic degradation in InGaAsP/InP layers, Appl. Phys. Lett., Volume 40 (1982), p. 562
[26] Generic degradation mechanism for 980 nm InGaAs/GaAs strained quantum well lasers, Appl. Phys. Lett., Volume 78 (2001), p. 3166
[27] Misfit stress-induced compositional instability in hetero-epitaxial compound semiconductor structures, J. Appl. Phys., Volume 79 (1996), p. 1397
[28] Disorder of an AlAs-GaAs superlattice by impurity diffusion, Appl. Phys. Lett., Volume 38 (1981), p. 776
[29] Laser operation induced migration of beryllium at mirrors of GaAs/AlGaAs laser diodes, Appl. Phys. Lett., Volume 63 (1993) no. 9, p. 1185
[30] Interdiffusion-induced degradation of 1017 nm ridge waveguide laser diodes, J. Cryst. Growth, Volume 210 (2000), p. 307
[31] Catastrophic damage of AlxGa1−xAs double-heterostructure laser material, J. Appl. Phys., Volume 50 (1979), p. 3721
[32] Facet heating of quantum well lasers, J. Appl. Phys., Volume 74 (1993), p. 2167
[33] Evidence for current-density-induced heating of AlGaAs single-quantum-well laser facets, Appl. Phys. Lett., Volume 59 (1991), p. 1005
[34] Micro-temperature measurements on semiconductor laser mirrors by reflectance modulation: a newly developed technique for laser characterization, Jpn. J. Appl. Phys., Volume 32 (1993), p. 5514
[35] Facet degradation of high power diode laser arrays, Appl. Phys. A, Volume 70 (2000), p. 377
[36] Microprobe Characterization of Semiconductors (J. Jiménez, ed.), Taylor and Francis, New York, 2002 (Chapter 2)
[37] Photoluminescence measurement of the facet temperature of 1 W gain-guided AlGaAs/GaAs laser diodes, J. Appl. Phys., Volume 80 (1996), p. 6547
[38] Facet heating and axial temperature profiles in high power GaAlAs/GaAs laser diodes, Microelectron. Reliability, Volume 38 (1998), p. 821
[39] Steady state model for facet heating leading to thermal runaway in semiconductor lasers, J. Appl. Phys., Volume 76 (1994), p. 2509
[40] Facet oxidation of InGaAs/GaAs strained quantum-well lasers, J. Appl. Phys., Volume 69 (1991), p. 8346
[41] Comparison of the facet heating behavior between AlGaAs single quantum-well lasers and double-heterojunction lasers, Appl. Phys. Lett., Volume 60 (1992) no. 9, p. 1043
[42] Reduction of mirror temperature in GaAs/AlGaAs quantum well laser diodes with segmented contacts, Appl. Phys. Lett., Volume 58 (1991), p. 1007
[43] Chemical changes accompanying facet degradation of AlGaAs quantum well lasers, J. Appl. Phys., Volume 72 (1992), p. 3884
[44] Peculiarities of catastrophic optical damage in single quantum well InGaAsP/InGaP buried-heterostructure lasers, J. Appl. Phys., Volume 75 (1994), p. 1840
[45] High-power operation in 0.98 μm strained-layer InGaAs-GaAs single-quantum-well ridge waveguide lasers, IEEE Photon. Technol. Lett., Volume 2 (1990), p. 849
[46] High performance AlGaAs-based laser diodes: fabrication, characterization and applications, Microelectron. J., Volume 29 (1998), p. 97
[47] Thermodynamics approach to catastrophic optical mirror damage of AlGaAs single quantum well lasers, Appl. Phys. Lett., Volume 55 (1989), p. 1152
[48] High-power operation of strained InGaAs/AlGaAs single quantum well lasers, Appl. Phys. Lett., Volume 59 (1991), p. 2642
[49] Optically enhanced oxidation of III-V compound semiconductors, J. Appl. Phys., Volume 57 (1985), p. 129
[50] High power Al-free diode lasers, Compound Semicond. Magazine, Volume 5 (1999), p. 6
Cité par Sources :
Commentaires - Politique