[Fiabilité des diodes laser : défauts cristallins et modes de dégradation]
L'analyse de la dégradation est fondamentale pour l'optimisation des diodes lasers de puissance. La dégradation des lasers se présente sous trois modes : rapide, graduelle et catastrophique. Elle peut se produire à l'intérieur de la cavité ou au voisinage des facettes. Chaque mode de dégradation présente sa propre signature et des défauts cristallins différents sont associés à chacun de ces modes. Les principaux mécanismes de dégradation sont analysés en montrant les relations entre les modes de dégradation, les propriétés des matériaux et la structure des lasers.
Degradation analysis is a crucial issue for the improvement of high power laser diodes. Degradation occurs in three different modes: rapid, gradual and catastrophic. It can be located inside the cavity or at the facet mirrors. Each type of degradation presents its own signature and different crystal defects appear associated with them. The main physical mechanisms responsible for laser degradation are analysed showing the relation between the main degradation modes and the different materials properties of the laser structures.
Accepté le :
Publié le :
Mots-clés : Dégradation, Dégradation catastrophique, Défauts lignes noires, Défauts points noirs, Recombinaison, Montée de dislocations, Glissement de dislocations
Juan Jiménez 1
@article{CRPHYS_2003__4_6_663_0, author = {Juan Jim\'enez}, title = {Laser diode reliability: crystal defects and degradation modes}, journal = {Comptes Rendus. Physique}, pages = {663--673}, publisher = {Elsevier}, volume = {4}, number = {6}, year = {2003}, doi = {10.1016/S1631-0705(03)00097-5}, language = {en}, }
Juan Jiménez. Laser diode reliability: crystal defects and degradation modes. Comptes Rendus. Physique, semiconductor lasers, Volume 4 (2003) no. 6, pp. 663-673. doi : 10.1016/S1631-0705(03)00097-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00097-5/
[1] A brief history of high power semiconductor lasers, IEEE J. Selected Topics Quantum Electron., Volume 6 (2000), p. 1470
[2] , Semiconductors and Semimetals, 22, 1985 (Part A, Chapter 6, p. 379)
[3] Diode laser degradation mechanisms: a review, Prog. Quant. Electr., Volume 15 (1992), pp. 153-174
[4] Reliability and Degradation of Semiconductors Lasers and LEDs, Artech House, Boston, 1991
[5] Optical strength of semiconductor laser materials, Prog. Quant. Electr., Volume 20 (1996) no. 1, p. 1
[6] Reliability and Degradation of III-V Optical Devices, Artech House, Boston, 1996
[7] Temperature, stress, disorder, and crystallization effects in laser diodes: measurements and impacts, SPIE, Volume 3001 (1997), p. 13
[8] Material and fabrication related limitations to high power operation of GaAs/AlGaAs and InGaAs/AlGaAs laser diodes, Mater. Sci. Eng. B, Volume 44 (1997), p. 359
[9] Estimation of the reliability of 0.98 μm InGaAs/AlGaAs strained quantum well lasers, J. Appl. Phys., Volume 72 (1992), p. 2119
[10] Direct evidence for group III atoms migration in aged 980 nm InGaAs/AlGaAs pump lasers, Phys. Status Solidi B, Volume 195 (2003), p. 159
[11] The origin of dislocation climb during laser operation, Appl. Phys. Lett., Volume 30 (1977), p. 368
[12] Dislocation climb model in compound semiconductors with zinc-blende structure, Appl. Phys. Lett., Volume 29 (1976), p. 461
[13] Vacancy controlled model of degradation in InGaAs/AlGaAs/GaAs heterostructure lasers, J. Appl. Phys., Volume 76 (1994), p. 4068
[14] Recombination enhanced defect reactions, Sol. St. Electron., Volume 21 (1978), p. 1391
[15] Dark line resistant diode laser at 0.8 μm comprising InAlGaAs strained quantum well, IEEE Photon Technol. Lett., Volume 3 (1991), p. 409
[16] Injection-enhanced dislocation glide under uniaxial stress in GaAs-(GaAl)As double heterostructure laser, Jpn. J. Appl. Phys., Volume 16 (1977), p. 233
[17] High-temperature degradation of InGaAsP/InP light emitting diodes, J. Appl. Phys., Volume 52 (1981), p. 5377
[18] Lattice defect structure of degraded InGaAsP-InP double-heterostructure lasers, Appl. Phys. Lett., Volume 40 (1982), p. 16
[19] Dark defects in InGaAsP/InP double heterostructure lasers under accelerated aging, J. Appl. Phys., Volume 54 (1983), p. 1246
[20] Deep level spectroscopy of high-power laser diode arrays, J. Appl. Phys., Volume 84 (1998), p. 1325
[21] Kinetic model for gradual degradation in semiconductor lasers and light emitting diodes, Appl. Phys. Lett., Volume 53 (1988), p. 2135
[22] Electron microscopy of life tested semiconductor laser diodes, Micron., Volume 31 (2000), p. 259
[23] Optical and structural analysis of degraded high power InGaAlAs/AlGaAs lasers, Mater. Sci. Eng. B, Volume 66 (1999), p. 209
[24] Microprobe Characterization of Semiconductors (J. Jiménez, ed.), Taylor and Francis, New York, 2002 (Chapter 1)
[25] Optically induced catastrophic degradation in InGaAsP/InP layers, Appl. Phys. Lett., Volume 40 (1982), p. 562
[26] Generic degradation mechanism for 980 nm InGaAs/GaAs strained quantum well lasers, Appl. Phys. Lett., Volume 78 (2001), p. 3166
[27] Misfit stress-induced compositional instability in hetero-epitaxial compound semiconductor structures, J. Appl. Phys., Volume 79 (1996), p. 1397
[28] Disorder of an AlAs-GaAs superlattice by impurity diffusion, Appl. Phys. Lett., Volume 38 (1981), p. 776
[29] Laser operation induced migration of beryllium at mirrors of GaAs/AlGaAs laser diodes, Appl. Phys. Lett., Volume 63 (1993) no. 9, p. 1185
[30] Interdiffusion-induced degradation of 1017 nm ridge waveguide laser diodes, J. Cryst. Growth, Volume 210 (2000), p. 307
[31] Catastrophic damage of AlxGa1−xAs double-heterostructure laser material, J. Appl. Phys., Volume 50 (1979), p. 3721
[32] Facet heating of quantum well lasers, J. Appl. Phys., Volume 74 (1993), p. 2167
[33] Evidence for current-density-induced heating of AlGaAs single-quantum-well laser facets, Appl. Phys. Lett., Volume 59 (1991), p. 1005
[34] Micro-temperature measurements on semiconductor laser mirrors by reflectance modulation: a newly developed technique for laser characterization, Jpn. J. Appl. Phys., Volume 32 (1993), p. 5514
[35] Facet degradation of high power diode laser arrays, Appl. Phys. A, Volume 70 (2000), p. 377
[36] Microprobe Characterization of Semiconductors (J. Jiménez, ed.), Taylor and Francis, New York, 2002 (Chapter 2)
[37] Photoluminescence measurement of the facet temperature of 1 W gain-guided AlGaAs/GaAs laser diodes, J. Appl. Phys., Volume 80 (1996), p. 6547
[38] Facet heating and axial temperature profiles in high power GaAlAs/GaAs laser diodes, Microelectron. Reliability, Volume 38 (1998), p. 821
[39] Steady state model for facet heating leading to thermal runaway in semiconductor lasers, J. Appl. Phys., Volume 76 (1994), p. 2509
[40] Facet oxidation of InGaAs/GaAs strained quantum-well lasers, J. Appl. Phys., Volume 69 (1991), p. 8346
[41] Comparison of the facet heating behavior between AlGaAs single quantum-well lasers and double-heterojunction lasers, Appl. Phys. Lett., Volume 60 (1992) no. 9, p. 1043
[42] Reduction of mirror temperature in GaAs/AlGaAs quantum well laser diodes with segmented contacts, Appl. Phys. Lett., Volume 58 (1991), p. 1007
[43] Chemical changes accompanying facet degradation of AlGaAs quantum well lasers, J. Appl. Phys., Volume 72 (1992), p. 3884
[44] Peculiarities of catastrophic optical damage in single quantum well InGaAsP/InGaP buried-heterostructure lasers, J. Appl. Phys., Volume 75 (1994), p. 1840
[45] High-power operation in 0.98 μm strained-layer InGaAs-GaAs single-quantum-well ridge waveguide lasers, IEEE Photon. Technol. Lett., Volume 2 (1990), p. 849
[46] High performance AlGaAs-based laser diodes: fabrication, characterization and applications, Microelectron. J., Volume 29 (1998), p. 97
[47] Thermodynamics approach to catastrophic optical mirror damage of AlGaAs single quantum well lasers, Appl. Phys. Lett., Volume 55 (1989), p. 1152
[48] High-power operation of strained InGaAs/AlGaAs single quantum well lasers, Appl. Phys. Lett., Volume 59 (1991), p. 2642
[49] Optically enhanced oxidation of III-V compound semiconductors, J. Appl. Phys., Volume 57 (1985), p. 129
[50] High power Al-free diode lasers, Compound Semicond. Magazine, Volume 5 (1999), p. 6
- Aging Mechanisms of Broad Area ∼800 nm Laser Diodes, IEEE Journal of Selected Topics in Quantum Electronics, Volume 31 (2025) no. 2: Pwr. and Effic. Scaling in, p. 1 | DOI:10.1109/jstqe.2024.3466169
- , 2024 IEEE 29th International Semiconductor Laser Conference (ISLC) (2024), p. 1 | DOI:10.1109/islc57752.2024.10717353
- , High-Power Diode Laser Technology XXII (2024), p. 15 | DOI:10.1117/12.2691022
- High-Resolution Thermal Profiling of a High-Power Diode Laser Facet During Aging, IEEE Journal of Quantum Electronics, Volume 60 (2024) no. 1, p. 1 | DOI:10.1109/jqe.2023.3325256
- High Power 780nm Broad- Area DFB Laser with Narrow Spectral Width, IEEE Photonics Journal (2024), p. 1 | DOI:10.1109/jphot.2024.3507802
- Dynamic Modeling of Stress-Induced Defect Expansion in VCSELs, IEEE Photonics Journal, Volume 16 (2024) no. 3, p. 1 | DOI:10.1109/jphot.2024.3401142
- An Interpretable Machine Learning Approach for Laser Lifetime Prediction, Journal of Lightwave Technology, Volume 42 (2024) no. 6, p. 2094 | DOI:10.1109/jlt.2023.3336256
- Development of a High-Accuracy, Low-Cost, and Portable Fluorometer with Smartphone Application for the Detection of Urinary Albumin towards the Early Screening of Chronic Kidney and Renal Diseases, Biosensors, Volume 13 (2023) no. 9, p. 876 | DOI:10.3390/bios13090876
- 垂直腔面发射激光器中位错形成及扩展特性分析, Laser Optoelectronics Progress, Volume 60 (2023) no. 5, p. 0514004 | DOI:10.3788/lop213162
- Dislocation‐Induced Structural and Luminescence Degradation in InAs Quantum Dot Emitters on Silicon, physica status solidi (a), Volume 220 (2023) no. 14 | DOI:10.1002/pssa.202300114
- Evaluation and Testing System for Automotive LiDAR Sensors, Applied Sciences, Volume 12 (2022) no. 24, p. 13003 | DOI:10.3390/app122413003
- Processes of the Reliability and Degradation Mechanism of High-Power Semiconductor Lasers, Crystals, Volume 12 (2022) no. 6, p. 765 | DOI:10.3390/cryst12060765
- High Reliability 808nm Laser Diodes With Output Power Over 19W Under CW Operation, IEEE Photonics Technology Letters, Volume 34 (2022) no. 6, p. 349 | DOI:10.1109/lpt.2022.3156913
- , International Conference on Optoelectronic Materials and Devices (ICOMD 2021) (2022), p. 67 | DOI:10.1117/12.2628609
- A Machine Learning-Based Framework for Predictive Maintenance of Semiconductor Laser for Optical Communication, Journal of Lightwave Technology, Volume 40 (2022) no. 14, p. 4698 | DOI:10.1109/jlt.2022.3163579
- Degradation Prediction of Semiconductor Lasers Using Conditional Variational Autoencoder, Journal of Lightwave Technology, Volume 40 (2022) no. 18, p. 6213 | DOI:10.1109/jlt.2022.3188831
- Influence of Laser Irradiation Settings, during Diode-Assisted Endodontics, on the Intraradicular Adhesion of Self-Etch and Self-Curing Luting Cement during Restoration—An Ex Vivo Study, Materials, Volume 15 (2022) no. 7, p. 2531 | DOI:10.3390/ma15072531
- Catastrophic optical damage in 808 nm broad area laser diodes: a study of the dark line defect propagation, Optics Express, Volume 30 (2022) no. 23, p. 42624 | DOI:10.1364/oe.463313
- Power Output of Two Semiconductor Lasers: An Observational Study, Photonics, Volume 9 (2022) no. 4, p. 219 | DOI:10.3390/photonics9040219
- Multi-Component Model for Semiconductor Laser Degradation, Advanced Laser Diode Reliability (2021), p. 51 | DOI:10.1016/b978-1-78548-154-3.50002-1
- CL as a tool for device characterisation: the case of laser diode degradation, Nano Express, Volume 2 (2021) no. 1, p. 014001 | DOI:10.1088/2632-959x/abdc3d
- Effective Failure Analysis for Packaged Semiconductor Lasers with a Simple Sample Preparation and Home-Made PEM System, Photonics, Volume 8 (2021) no. 6, p. 184 | DOI:10.3390/photonics8060184
- A Framework to Analyze Noise Factors of Automotive Perception Sensors, IEEE Sensors Letters, Volume 4 (2020) no. 6, p. 1 | DOI:10.1109/lsens.2020.2996428
- Rapid degradation of InGaN/GaN green laser diodes, Superlattices and Microstructures, Volume 142 (2020), p. 106517 | DOI:10.1016/j.spmi.2020.106517
- , 2019 21st International Conference on Transparent Optical Networks (ICTON) (2019), p. 1 | DOI:10.1109/icton.2019.8840267
- , High-Power Diode Laser Technology XVII (2019), p. 23 | DOI:10.1117/12.2507435
- Design, Fabrication, and Characterization of a Compact Hierarchical Manifold Microchannel Heat Sink Array for Two-Phase Cooling, IEEE Transactions on Components, Packaging and Manufacturing Technology, Volume 9 (2019) no. 7, p. 1291 | DOI:10.1109/tcpmt.2019.2899648
- Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers, Journal of Physics D: Applied Physics, Volume 51 (2018) no. 1, p. 013001 | DOI:10.1088/1361-6463/aa9812
- , 2017 IEEE High Power Diode Lasers and Systems Conference (HPD) (2017), p. 57 | DOI:10.1109/hpd.2017.8261098
- , High-Power Diode Laser Technology XV, Volume 10086 (2017), p. 100860P | DOI:10.1117/12.2251890
- Nanoscale effects on the thermal and mechanical properties of AlGaAs/GaAs quantum well laser diodes: influence on the catastrophic optical damage, Journal of Physics D: Applied Physics, Volume 50 (2017) no. 23, p. 235101 | DOI:10.1088/1361-6463/aa6fbd
- Optically pumped VECSELs: review of technology and progress, Journal of Physics D: Applied Physics, Volume 50 (2017) no. 38, p. 383001 | DOI:10.1088/1361-6463/aa7bfd
- Photomodification of carrier lifetime and diffusivity in AlGaN epitaxial layers, Current Applied Physics, Volume 16 (2016) no. 6, p. 633 | DOI:10.1016/j.cap.2016.03.010
- , High-Power Diode Laser Technology and Applications XIV, Volume 9733 (2016), p. 973306 | DOI:10.1117/12.2212953
- Catastrophic optical damage of high power InGaAs/AlGaAs laser diodes, Microelectronics Reliability, Volume 64 (2016), p. 627 | DOI:10.1016/j.microrel.2016.07.038
- , Semiconductor Lasers and Laser Dynamics VII, Volume 9892 (2016), p. 98921Y | DOI:10.1117/12.2227771
- Cathodoluminescence, Spectroscopic Analysis of Optoelectronic Semiconductors, Volume 202 (2016), p. 213 | DOI:10.1007/978-3-319-42349-4_5
- , Components and Packaging for Laser Systems, Volume 9346 (2015), p. 934608 | DOI:10.1117/12.2077445
- , High-Power Diode Laser Technology and Applications XIII, Volume 9348 (2015), p. 93480O | DOI:10.1117/12.2079464
- Defect Creation in InGaAs/GaAs Multiple Quantum Wells – II. Optical Properties, Journal of Crystal Growth, Volume 425 (2015), p. 49 | DOI:10.1016/j.jcrysgro.2015.03.048
- Degradation of high power single emitter laser modules using nanosilver paste in continuous pulse conditions, Microelectronics Reliability, Volume 55 (2015) no. 12, p. 2532 | DOI:10.1016/j.microrel.2015.07.037
- , 2014 IEEE Aerospace Conference (2014), p. 1 | DOI:10.1109/aero.2014.6836254
- , 2013 14th International Conference on Electronic Packaging Technology (2013), p. 761 | DOI:10.1109/icept.2013.6756576
- Low threshold for optical damage in AlGaN epilayers and heterostructures, Journal of Applied Physics, Volume 114 (2013) no. 20 | DOI:10.1063/1.4834520
- Defect signatures in degraded high power laser diodes, Microelectronics Reliability, Volume 53 (2013) no. 9-11, p. 1501 | DOI:10.1016/j.microrel.2013.07.071
- Note: Design of a dose-controlled phototherapy system based on hyperspectral studies, Review of Scientific Instruments, Volume 84 (2013) no. 2 | DOI:10.1063/1.4790412
- Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers, IEEE Journal of Quantum Electronics, Volume 48 (2012) no. 3, p. 318 | DOI:10.1109/jqe.2011.2180365
- VCSEL reliability in ATLAS and development of robust arrays, Journal of Instrumentation, Volume 7 (2012) no. 01, p. C01098 | DOI:10.1088/1748-0221/7/01/c01098
- Narrow linewidth 1118/559 nm VECSEL based on strain compensated GaInAs/GaAs quantum-wells for laser cooling of Mg-ions, Optical Materials Express, Volume 2 (2012) no. 8, p. 1011 | DOI:10.1364/ome.2.001011
- 7.4 W yellow GaInNAs-based semiconductor disk laser, Electronics Letters, Volume 47 (2011) no. 20, p. 1139 | DOI:10.1049/el.2011.2282
- Record High-Temperature Long-Pulse Operation of 8xx-nm Diode Laser Bar with Aluminum-Free Active Region, IEEE Journal of Selected Topics in Quantum Electronics, Volume 17 (2011) no. 6, p. 1727 | DOI:10.1109/jstqe.2011.2115234
- Non-Absorbing Mirrors for Quantum Well Colliding Pulse Mode-Locked Lasers, IEEE Photonics Technology Letters (2011) | DOI:10.1109/lpt.2010.2103935
- Effect of injection current on the repeatability of laser diode junction voltage-temperature measurements, Journal of Applied Physics, Volume 101 (2007) no. 2 | DOI:10.1063/1.2427097
- Raman and luminescence probes for the study of compound semiconductors, Thin Solid Films, Volume 515 (2007) no. 10, p. 4412 | DOI:10.1016/j.tsf.2006.07.113
- AlInP–AlGaInP Quantum-Well Lasers Grown by Molecular Beam Epitaxy, IEEE Photonics Technology Letters, Volume 18 (2006) no. 21, p. 2257 | DOI:10.1109/lpt.2006.884730
- Cathodoluminescence spectral imaging as a technique for the study of cavity degradation of high-power QW lasers, Materials Science in Semiconductor Processing, Volume 9 (2006) no. 1-3, p. 204 | DOI:10.1016/j.mssp.2006.01.061
- Cation intermixing at quantum well/barriers interfaces in aged AlGaAs-based high-power laser diodes bars, Applied Physics Letters, Volume 86 (2005) no. 13 | DOI:10.1063/1.1891286
Cité par 57 documents. Sources : Crossref
Commentaires - Politique