Comptes Rendus
Laser diode reliability: crystal defects and degradation modes
[Fiabilité des diodes laser : défauts cristallins et modes de dégradation]
Comptes Rendus. Physique, semiconductor lasers, Volume 4 (2003) no. 6, pp. 663-673.

L'analyse de la dégradation est fondamentale pour l'optimisation des diodes lasers de puissance. La dégradation des lasers se présente sous trois modes : rapide, graduelle et catastrophique. Elle peut se produire à l'intérieur de la cavité ou au voisinage des facettes. Chaque mode de dégradation présente sa propre signature et des défauts cristallins différents sont associés à chacun de ces modes. Les principaux mécanismes de dégradation sont analysés en montrant les relations entre les modes de dégradation, les propriétés des matériaux et la structure des lasers.

Degradation analysis is a crucial issue for the improvement of high power laser diodes. Degradation occurs in three different modes: rapid, gradual and catastrophic. It can be located inside the cavity or at the facet mirrors. Each type of degradation presents its own signature and different crystal defects appear associated with them. The main physical mechanisms responsible for laser degradation are analysed showing the relation between the main degradation modes and the different materials properties of the laser structures.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0705(03)00097-5
Keywords: Degradation, Catastrophic degradation, Dark line defects, Dark spot defects, Recombination enhanced defect reaction, Dislocation climb, Dislocation glide
Mots-clés : Dégradation, Dégradation catastrophique, Défauts lignes noires, Défauts points noirs, Recombinaison, Montée de dislocations, Glissement de dislocations

Juan Jiménez 1

1 Fı́sica de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
@article{CRPHYS_2003__4_6_663_0,
     author = {Juan Jim\'enez},
     title = {Laser diode reliability: crystal defects and degradation modes},
     journal = {Comptes Rendus. Physique},
     pages = {663--673},
     publisher = {Elsevier},
     volume = {4},
     number = {6},
     year = {2003},
     doi = {10.1016/S1631-0705(03)00097-5},
     language = {en},
}
TY  - JOUR
AU  - Juan Jiménez
TI  - Laser diode reliability: crystal defects and degradation modes
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 663
EP  - 673
VL  - 4
IS  - 6
PB  - Elsevier
DO  - 10.1016/S1631-0705(03)00097-5
LA  - en
ID  - CRPHYS_2003__4_6_663_0
ER  - 
%0 Journal Article
%A Juan Jiménez
%T Laser diode reliability: crystal defects and degradation modes
%J Comptes Rendus. Physique
%D 2003
%P 663-673
%V 4
%N 6
%I Elsevier
%R 10.1016/S1631-0705(03)00097-5
%G en
%F CRPHYS_2003__4_6_663_0
Juan Jiménez. Laser diode reliability: crystal defects and degradation modes. Comptes Rendus. Physique, semiconductor lasers, Volume 4 (2003) no. 6, pp. 663-673. doi : 10.1016/S1631-0705(03)00097-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00097-5/

[1] D.F. Welch A brief history of high power semiconductor lasers, IEEE J. Selected Topics Quantum Electron., Volume 6 (2000), p. 1470

[2] P.M. Petroff, Semiconductors and Semimetals, 22, 1985 (Part A, Chapter 6, p. 379)

[3] R.G. Waters Diode laser degradation mechanisms: a review, Prog. Quant. Electr., Volume 15 (1992), pp. 153-174

[4] M. Fukuda Reliability and Degradation of Semiconductors Lasers and LEDs, Artech House, Boston, 1991

[5] P.G. Eliseev Optical strength of semiconductor laser materials, Prog. Quant. Electr., Volume 20 (1996) no. 1, p. 1

[6] O. Ueda Reliability and Degradation of III-V Optical Devices, Artech House, Boston, 1996

[7] P.W. Epperlein Temperature, stress, disorder, and crystallization effects in laser diodes: measurements and impacts, SPIE, Volume 3001 (1997), p. 13

[8] A. Jakubowicz Material and fabrication related limitations to high power operation of GaAs/AlGaAs and InGaAs/AlGaAs laser diodes, Mater. Sci. Eng. B, Volume 44 (1997), p. 359

[9] M. Okayasu; M. Fukuda Estimation of the reliability of 0.98 μm InGaAs/AlGaAs strained quantum well lasers, J. Appl. Phys., Volume 72 (1992), p. 2119

[10] M. Betiatti; F. Laruelle; M. Pommiès; G. Hallais; J. Jiménez; M. Avella; E.V.K. Rao Direct evidence for group III atoms migration in aged 980 nm InGaAs/AlGaAs pump lasers, Phys. Status Solidi B, Volume 195 (2003), p. 159

[11] S. O'Hara; P.W. Hutchinson; P.S. Dobson The origin of dislocation climb during laser operation, Appl. Phys. Lett., Volume 30 (1977), p. 368

[12] P.M. Petroff; L.C. Kimerling Dislocation climb model in compound semiconductors with zinc-blende structure, Appl. Phys. Lett., Volume 29 (1976), p. 461

[13] A.A. Hopgood Vacancy controlled model of degradation in InGaAs/AlGaAs/GaAs heterostructure lasers, J. Appl. Phys., Volume 76 (1994), p. 4068

[14] L.C. Kimerling Recombination enhanced defect reactions, Sol. St. Electron., Volume 21 (1978), p. 1391

[15] R.G. Waters; R.J. Dalby; J.A. Baumann; J.L. De Sanctis; A.H. Shepard Dark line resistant diode laser at 0.8 μm comprising InAlGaAs strained quantum well, IEEE Photon Technol. Lett., Volume 3 (1991), p. 409

[16] T. Kamejima; K. Ishida; J. Matsui Injection-enhanced dislocation glide under uniaxial stress in GaAs-(GaAl)As double heterostructure laser, Jpn. J. Appl. Phys., Volume 16 (1977), p. 233

[17] H. Temkin; C.L. Zipfel; V.G. Keramidas High-temperature degradation of InGaAsP/InP light emitting diodes, J. Appl. Phys., Volume 52 (1981), p. 5377

[18] K. Ishida; T. Kamejima; Y. Matsumoto; K. Endo Lattice defect structure of degraded InGaAsP-InP double-heterostructure lasers, Appl. Phys. Lett., Volume 40 (1982), p. 16

[19] M. Fukuda; K. Wakita; G. Iwane Dark defects in InGaAsP/InP double heterostructure lasers under accelerated aging, J. Appl. Phys., Volume 54 (1983), p. 1246

[20] J.W. Tomm; A. Barwolff; A. Jaegger; T. Elsaesser; J. Bollmann; W.T. Masselink; A. Gerhardt; J. Donecker Deep level spectroscopy of high-power laser diode arrays, J. Appl. Phys., Volume 84 (1998), p. 1325

[21] Y.L. Khait; J. Salzman; R. Beserman Kinetic model for gradual degradation in semiconductor lasers and light emitting diodes, Appl. Phys. Lett., Volume 53 (1988), p. 2135

[22] M. Vanzi; A. Bonfiglio; F. Magistrali; G. Salmini Electron microscopy of life tested semiconductor laser diodes, Micron., Volume 31 (2000), p. 259

[23] C. Frigeri; M. Baeumler; A. Migliori; S. Müller; J.L. Weyher; W. Jantz Optical and structural analysis of degraded high power InGaAlAs/AlGaAs lasers, Mater. Sci. Eng. B, Volume 66 (1999), p. 209

[24] M. Baeumler; W. Jantz Microprobe Characterization of Semiconductors (J. Jiménez, ed.), Taylor and Francis, New York, 2002 (Chapter 1)

[25] H. Temkin Optically induced catastrophic degradation in InGaAsP/InP layers, Appl. Phys. Lett., Volume 40 (1982), p. 562

[26] S.N.G. Chu; N. Chand; W.B. Joyce; P. Parayanthal; D.P. Wilt Generic degradation mechanism for 980 nm InGaAs/GaAs strained quantum well lasers, Appl. Phys. Lett., Volume 78 (2001), p. 3166

[27] S.N.G. Chu; R.A. Logan; W.T. Tsang Misfit stress-induced compositional instability in hetero-epitaxial compound semiconductor structures, J. Appl. Phys., Volume 79 (1996), p. 1397

[28] W.D. Laidig; N. Holonyak; M.D. Camras; K. Hess; J.J. Coleman; P.D. Dapkus; J. Bardeen Disorder of an AlAs-GaAs superlattice by impurity diffusion, Appl. Phys. Lett., Volume 38 (1981), p. 776

[29] A. Jakubowicz; A. Oosenbrug; Th. Forster Laser operation induced migration of beryllium at mirrors of GaAs/AlGaAs laser diodes, Appl. Phys. Lett., Volume 63 (1993) no. 9, p. 1185

[30] I. Rechenberg; A. Klehr; W. Erfurth; F. Bugge; A. Klein Interdiffusion-induced degradation of 1017 nm ridge waveguide laser diodes, J. Cryst. Growth, Volume 210 (2000), p. 307

[31] C.H. Henry; P.M. Petroff; R.A. Logan; F.R. Merritt Catastrophic damage of AlxGa1−xAs double-heterostructure laser material, J. Appl. Phys., Volume 50 (1979), p. 3721

[32] G. Chen; C.L. Tien Facet heating of quantum well lasers, J. Appl. Phys., Volume 74 (1993), p. 2167

[33] W.C. Tang; H.J. Rosen; P. Vettiger; D.J. Webb Evidence for current-density-induced heating of AlGaAs single-quantum-well laser facets, Appl. Phys. Lett., Volume 59 (1991), p. 1005

[34] P.W. Epperlein Micro-temperature measurements on semiconductor laser mirrors by reflectance modulation: a newly developed technique for laser characterization, Jpn. J. Appl. Phys., Volume 32 (1993), p. 5514

[35] J.W. Tomm; E. Thamm; A. Barwolff; T. Elsaesser; J. Luft; M. Baeumler; S. Müller; W. Jantz; I. Rechenberg; G. Erbert Facet degradation of high power diode laser arrays, Appl. Phys. A, Volume 70 (2000), p. 377

[36] J. Jiménez; I. De Wolf; J.P. Landesman Microprobe Characterization of Semiconductors (J. Jiménez, ed.), Taylor and Francis, New York, 2002 (Chapter 2)

[37] J.M. Rommel; P. Gavrilovic; F.P. Dabkowski Photoluminescence measurement of the facet temperature of 1 W gain-guided AlGaAs/GaAs laser diodes, J. Appl. Phys., Volume 80 (1996), p. 6547

[38] U. Menzel; R. Puchert; A. Barwolff; A. Lau Facet heating and axial temperature profiles in high power GaAlAs/GaAs laser diodes, Microelectron. Reliability, Volume 38 (1998), p. 821

[39] R. Schatz; C.G. Bethea Steady state model for facet heating leading to thermal runaway in semiconductor lasers, J. Appl. Phys., Volume 76 (1994), p. 2509

[40] M. Okayasu; M. Fukuda; T. Takeshita; S. Uehara; K. Kurumada Facet oxidation of InGaAs/GaAs strained quantum-well lasers, J. Appl. Phys., Volume 69 (1991), p. 8346

[41] W.C. Tang; H.J. Rosen; P. Vettiger; J. Webb Comparison of the facet heating behavior between AlGaAs single quantum-well lasers and double-heterojunction lasers, Appl. Phys. Lett., Volume 60 (1992) no. 9, p. 1043

[42] F.U. Herrmann; S. Beeck; G. Abstreiter; C. Hanke; C. Hoyler; L. Korte Reduction of mirror temperature in GaAs/AlGaAs quantum well laser diodes with segmented contacts, Appl. Phys. Lett., Volume 58 (1991), p. 1007

[43] F.A. Houle; D.L. Neiman; W.C. Tang; H.J. Rosen Chemical changes accompanying facet degradation of AlGaAs quantum well lasers, J. Appl. Phys., Volume 72 (1992), p. 3884

[44] J.S. Yoo; S.H. Lee; G.T. Park; Y.T. Ko; T. Kim Peculiarities of catastrophic optical damage in single quantum well InGaAsP/InGaP buried-heterostructure lasers, J. Appl. Phys., Volume 75 (1994), p. 1840

[45] T. Takeshita; M. Okayasu; S. Uehara High-power operation in 0.98 μm strained-layer InGaAs-GaAs single-quantum-well ridge waveguide lasers, IEEE Photon. Technol. Lett., Volume 2 (1990), p. 849

[46] V. Iakolev; A. Sarbu; A. Mereutza; G. Suruceanu; A. Caliman; O. Catughin; A. Lupu; S. Vieru High performance AlGaAs-based laser diodes: fabrication, characterization and applications, Microelectron. J., Volume 29 (1998), p. 97

[47] A. Moser; E.E. Latta Thermodynamics approach to catastrophic optical mirror damage of AlGaAs single quantum well lasers, Appl. Phys. Lett., Volume 55 (1989), p. 1152

[48] A. Moser; A. Oosenbrug; E.E. Latta; Th. Forster; M. Gasser High-power operation of strained InGaAs/AlGaAs single quantum well lasers, Appl. Phys. Lett., Volume 59 (1991), p. 2642

[49] M. Fukuda; K. Takahei Optically enhanced oxidation of III-V compound semiconductors, J. Appl. Phys., Volume 57 (1985), p. 129

[50] D. Botez High power Al-free diode lasers, Compound Semicond. Magazine, Volume 5 (1999), p. 6

Cité par Sources :

Commentaires - Politique