Comptes Rendus
Laser diode reliability: crystal defects and degradation modes
[Fiabilité des diodes laser : défauts cristallins et modes de dégradation]
Comptes Rendus. Physique, semiconductor lasers, Volume 4 (2003) no. 6, pp. 663-673.

L'analyse de la dégradation est fondamentale pour l'optimisation des diodes lasers de puissance. La dégradation des lasers se présente sous trois modes : rapide, graduelle et catastrophique. Elle peut se produire à l'intérieur de la cavité ou au voisinage des facettes. Chaque mode de dégradation présente sa propre signature et des défauts cristallins différents sont associés à chacun de ces modes. Les principaux mécanismes de dégradation sont analysés en montrant les relations entre les modes de dégradation, les propriétés des matériaux et la structure des lasers.

Degradation analysis is a crucial issue for the improvement of high power laser diodes. Degradation occurs in three different modes: rapid, gradual and catastrophic. It can be located inside the cavity or at the facet mirrors. Each type of degradation presents its own signature and different crystal defects appear associated with them. The main physical mechanisms responsible for laser degradation are analysed showing the relation between the main degradation modes and the different materials properties of the laser structures.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0705(03)00097-5
Keywords: Degradation, Catastrophic degradation, Dark line defects, Dark spot defects, Recombination enhanced defect reaction, Dislocation climb, Dislocation glide
Mots-clés : Dégradation, Dégradation catastrophique, Défauts lignes noires, Défauts points noirs, Recombinaison, Montée de dislocations, Glissement de dislocations

Juan Jiménez 1

1 Fı́sica de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
@article{CRPHYS_2003__4_6_663_0,
     author = {Juan Jim\'enez},
     title = {Laser diode reliability: crystal defects and degradation modes},
     journal = {Comptes Rendus. Physique},
     pages = {663--673},
     publisher = {Elsevier},
     volume = {4},
     number = {6},
     year = {2003},
     doi = {10.1016/S1631-0705(03)00097-5},
     language = {en},
}
TY  - JOUR
AU  - Juan Jiménez
TI  - Laser diode reliability: crystal defects and degradation modes
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 663
EP  - 673
VL  - 4
IS  - 6
PB  - Elsevier
DO  - 10.1016/S1631-0705(03)00097-5
LA  - en
ID  - CRPHYS_2003__4_6_663_0
ER  - 
%0 Journal Article
%A Juan Jiménez
%T Laser diode reliability: crystal defects and degradation modes
%J Comptes Rendus. Physique
%D 2003
%P 663-673
%V 4
%N 6
%I Elsevier
%R 10.1016/S1631-0705(03)00097-5
%G en
%F CRPHYS_2003__4_6_663_0
Juan Jiménez. Laser diode reliability: crystal defects and degradation modes. Comptes Rendus. Physique, semiconductor lasers, Volume 4 (2003) no. 6, pp. 663-673. doi : 10.1016/S1631-0705(03)00097-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00097-5/

[1] D.F. Welch A brief history of high power semiconductor lasers, IEEE J. Selected Topics Quantum Electron., Volume 6 (2000), p. 1470

[2] P.M. Petroff, Semiconductors and Semimetals, 22, 1985 (Part A, Chapter 6, p. 379)

[3] R.G. Waters Diode laser degradation mechanisms: a review, Prog. Quant. Electr., Volume 15 (1992), pp. 153-174

[4] M. Fukuda Reliability and Degradation of Semiconductors Lasers and LEDs, Artech House, Boston, 1991

[5] P.G. Eliseev Optical strength of semiconductor laser materials, Prog. Quant. Electr., Volume 20 (1996) no. 1, p. 1

[6] O. Ueda Reliability and Degradation of III-V Optical Devices, Artech House, Boston, 1996

[7] P.W. Epperlein Temperature, stress, disorder, and crystallization effects in laser diodes: measurements and impacts, SPIE, Volume 3001 (1997), p. 13

[8] A. Jakubowicz Material and fabrication related limitations to high power operation of GaAs/AlGaAs and InGaAs/AlGaAs laser diodes, Mater. Sci. Eng. B, Volume 44 (1997), p. 359

[9] M. Okayasu; M. Fukuda Estimation of the reliability of 0.98 μm InGaAs/AlGaAs strained quantum well lasers, J. Appl. Phys., Volume 72 (1992), p. 2119

[10] M. Betiatti; F. Laruelle; M. Pommiès; G. Hallais; J. Jiménez; M. Avella; E.V.K. Rao Direct evidence for group III atoms migration in aged 980 nm InGaAs/AlGaAs pump lasers, Phys. Status Solidi B, Volume 195 (2003), p. 159

[11] S. O'Hara; P.W. Hutchinson; P.S. Dobson The origin of dislocation climb during laser operation, Appl. Phys. Lett., Volume 30 (1977), p. 368

[12] P.M. Petroff; L.C. Kimerling Dislocation climb model in compound semiconductors with zinc-blende structure, Appl. Phys. Lett., Volume 29 (1976), p. 461

[13] A.A. Hopgood Vacancy controlled model of degradation in InGaAs/AlGaAs/GaAs heterostructure lasers, J. Appl. Phys., Volume 76 (1994), p. 4068

[14] L.C. Kimerling Recombination enhanced defect reactions, Sol. St. Electron., Volume 21 (1978), p. 1391

[15] R.G. Waters; R.J. Dalby; J.A. Baumann; J.L. De Sanctis; A.H. Shepard Dark line resistant diode laser at 0.8 μm comprising InAlGaAs strained quantum well, IEEE Photon Technol. Lett., Volume 3 (1991), p. 409

[16] T. Kamejima; K. Ishida; J. Matsui Injection-enhanced dislocation glide under uniaxial stress in GaAs-(GaAl)As double heterostructure laser, Jpn. J. Appl. Phys., Volume 16 (1977), p. 233

[17] H. Temkin; C.L. Zipfel; V.G. Keramidas High-temperature degradation of InGaAsP/InP light emitting diodes, J. Appl. Phys., Volume 52 (1981), p. 5377

[18] K. Ishida; T. Kamejima; Y. Matsumoto; K. Endo Lattice defect structure of degraded InGaAsP-InP double-heterostructure lasers, Appl. Phys. Lett., Volume 40 (1982), p. 16

[19] M. Fukuda; K. Wakita; G. Iwane Dark defects in InGaAsP/InP double heterostructure lasers under accelerated aging, J. Appl. Phys., Volume 54 (1983), p. 1246

[20] J.W. Tomm; A. Barwolff; A. Jaegger; T. Elsaesser; J. Bollmann; W.T. Masselink; A. Gerhardt; J. Donecker Deep level spectroscopy of high-power laser diode arrays, J. Appl. Phys., Volume 84 (1998), p. 1325

[21] Y.L. Khait; J. Salzman; R. Beserman Kinetic model for gradual degradation in semiconductor lasers and light emitting diodes, Appl. Phys. Lett., Volume 53 (1988), p. 2135

[22] M. Vanzi; A. Bonfiglio; F. Magistrali; G. Salmini Electron microscopy of life tested semiconductor laser diodes, Micron., Volume 31 (2000), p. 259

[23] C. Frigeri; M. Baeumler; A. Migliori; S. Müller; J.L. Weyher; W. Jantz Optical and structural analysis of degraded high power InGaAlAs/AlGaAs lasers, Mater. Sci. Eng. B, Volume 66 (1999), p. 209

[24] M. Baeumler; W. Jantz Microprobe Characterization of Semiconductors (J. Jiménez, ed.), Taylor and Francis, New York, 2002 (Chapter 1)

[25] H. Temkin Optically induced catastrophic degradation in InGaAsP/InP layers, Appl. Phys. Lett., Volume 40 (1982), p. 562

[26] S.N.G. Chu; N. Chand; W.B. Joyce; P. Parayanthal; D.P. Wilt Generic degradation mechanism for 980 nm InGaAs/GaAs strained quantum well lasers, Appl. Phys. Lett., Volume 78 (2001), p. 3166

[27] S.N.G. Chu; R.A. Logan; W.T. Tsang Misfit stress-induced compositional instability in hetero-epitaxial compound semiconductor structures, J. Appl. Phys., Volume 79 (1996), p. 1397

[28] W.D. Laidig; N. Holonyak; M.D. Camras; K. Hess; J.J. Coleman; P.D. Dapkus; J. Bardeen Disorder of an AlAs-GaAs superlattice by impurity diffusion, Appl. Phys. Lett., Volume 38 (1981), p. 776

[29] A. Jakubowicz; A. Oosenbrug; Th. Forster Laser operation induced migration of beryllium at mirrors of GaAs/AlGaAs laser diodes, Appl. Phys. Lett., Volume 63 (1993) no. 9, p. 1185

[30] I. Rechenberg; A. Klehr; W. Erfurth; F. Bugge; A. Klein Interdiffusion-induced degradation of 1017 nm ridge waveguide laser diodes, J. Cryst. Growth, Volume 210 (2000), p. 307

[31] C.H. Henry; P.M. Petroff; R.A. Logan; F.R. Merritt Catastrophic damage of AlxGa1−xAs double-heterostructure laser material, J. Appl. Phys., Volume 50 (1979), p. 3721

[32] G. Chen; C.L. Tien Facet heating of quantum well lasers, J. Appl. Phys., Volume 74 (1993), p. 2167

[33] W.C. Tang; H.J. Rosen; P. Vettiger; D.J. Webb Evidence for current-density-induced heating of AlGaAs single-quantum-well laser facets, Appl. Phys. Lett., Volume 59 (1991), p. 1005

[34] P.W. Epperlein Micro-temperature measurements on semiconductor laser mirrors by reflectance modulation: a newly developed technique for laser characterization, Jpn. J. Appl. Phys., Volume 32 (1993), p. 5514

[35] J.W. Tomm; E. Thamm; A. Barwolff; T. Elsaesser; J. Luft; M. Baeumler; S. Müller; W. Jantz; I. Rechenberg; G. Erbert Facet degradation of high power diode laser arrays, Appl. Phys. A, Volume 70 (2000), p. 377

[36] J. Jiménez; I. De Wolf; J.P. Landesman Microprobe Characterization of Semiconductors (J. Jiménez, ed.), Taylor and Francis, New York, 2002 (Chapter 2)

[37] J.M. Rommel; P. Gavrilovic; F.P. Dabkowski Photoluminescence measurement of the facet temperature of 1 W gain-guided AlGaAs/GaAs laser diodes, J. Appl. Phys., Volume 80 (1996), p. 6547

[38] U. Menzel; R. Puchert; A. Barwolff; A. Lau Facet heating and axial temperature profiles in high power GaAlAs/GaAs laser diodes, Microelectron. Reliability, Volume 38 (1998), p. 821

[39] R. Schatz; C.G. Bethea Steady state model for facet heating leading to thermal runaway in semiconductor lasers, J. Appl. Phys., Volume 76 (1994), p. 2509

[40] M. Okayasu; M. Fukuda; T. Takeshita; S. Uehara; K. Kurumada Facet oxidation of InGaAs/GaAs strained quantum-well lasers, J. Appl. Phys., Volume 69 (1991), p. 8346

[41] W.C. Tang; H.J. Rosen; P. Vettiger; J. Webb Comparison of the facet heating behavior between AlGaAs single quantum-well lasers and double-heterojunction lasers, Appl. Phys. Lett., Volume 60 (1992) no. 9, p. 1043

[42] F.U. Herrmann; S. Beeck; G. Abstreiter; C. Hanke; C. Hoyler; L. Korte Reduction of mirror temperature in GaAs/AlGaAs quantum well laser diodes with segmented contacts, Appl. Phys. Lett., Volume 58 (1991), p. 1007

[43] F.A. Houle; D.L. Neiman; W.C. Tang; H.J. Rosen Chemical changes accompanying facet degradation of AlGaAs quantum well lasers, J. Appl. Phys., Volume 72 (1992), p. 3884

[44] J.S. Yoo; S.H. Lee; G.T. Park; Y.T. Ko; T. Kim Peculiarities of catastrophic optical damage in single quantum well InGaAsP/InGaP buried-heterostructure lasers, J. Appl. Phys., Volume 75 (1994), p. 1840

[45] T. Takeshita; M. Okayasu; S. Uehara High-power operation in 0.98 μm strained-layer InGaAs-GaAs single-quantum-well ridge waveguide lasers, IEEE Photon. Technol. Lett., Volume 2 (1990), p. 849

[46] V. Iakolev; A. Sarbu; A. Mereutza; G. Suruceanu; A. Caliman; O. Catughin; A. Lupu; S. Vieru High performance AlGaAs-based laser diodes: fabrication, characterization and applications, Microelectron. J., Volume 29 (1998), p. 97

[47] A. Moser; E.E. Latta Thermodynamics approach to catastrophic optical mirror damage of AlGaAs single quantum well lasers, Appl. Phys. Lett., Volume 55 (1989), p. 1152

[48] A. Moser; A. Oosenbrug; E.E. Latta; Th. Forster; M. Gasser High-power operation of strained InGaAs/AlGaAs single quantum well lasers, Appl. Phys. Lett., Volume 59 (1991), p. 2642

[49] M. Fukuda; K. Takahei Optically enhanced oxidation of III-V compound semiconductors, J. Appl. Phys., Volume 57 (1985), p. 129

[50] D. Botez High power Al-free diode lasers, Compound Semicond. Magazine, Volume 5 (1999), p. 6

  • Elaine D. McVay; Robert J. Deri; Salmaan H. Baxamusa; William E. Fenwick; Jiang Li; Joel B. Varley; Daniel E. Mittelberger; Luyang Wang; Kevin P. Pipe; Matthew C. Boisselle; Laina V. Gilmore; Rebecca B. Swertfeger; Mark T. Crowley; Prabhu Thiagarajan; Jiyon Song; Gerald T. Thaler; Christopher F. Schuck; Adam Dusty Aging Mechanisms of Broad Area ∼800 nm Laser Diodes, IEEE Journal of Selected Topics in Quantum Electronics, Volume 31 (2025) no. 2: Pwr. and Effic. Scaling in, p. 1 | DOI:10.1109/jstqe.2024.3466169
  • E. McVay; R.J. Deri; S. Baxamusa; W.E. Fenwick; J. Li; D. Mittelberger; L. Wang; Kevin Pipe; M.C. Boisselle; J. Varley; R.B. Swertfeger; L. Gilmore; M. Crowley; P. Thiagarajan; J. Song; G. Thaler; C. Schuck; A. Dusty, 2024 IEEE 29th International Semiconductor Laser Conference (ISLC) (2024), p. 1 | DOI:10.1109/islc57752.2024.10717353
  • Elaine McVay; Robert Deri; Jiang Li; Salmaan H. Baxamusa; William E. Fenwick; Matthew Boisselle; Daniel MIttelberger; Joel Varley; Rebecca Swertfeger; Laina Gilmore; Mark Crowley; Prabhu Thiagarajan; Jiyon Song; Gerald Thaler; Christopher Schuck; Adam Dusty; Erik P. Zucker; Jenna Campbell; Mark S. Zediker, High-Power Diode Laser Technology XXII (2024), p. 15 | DOI:10.1117/12.2691022
  • Luyang Wang; Aman Kumar Jha; Salmaan H. Baxamusa; Jack Kotovsky; Robert J. Deri; Rebecca B. Swertfeger; Prabhu Thiagarajan; Mark T. Crowley; Gerald Thaler; Jiyon Song; Kevin P. Pipe High-Resolution Thermal Profiling of a High-Power Diode Laser Facet During Aging, IEEE Journal of Quantum Electronics, Volume 60 (2024) no. 1, p. 1 | DOI:10.1109/jqe.2023.3325256
  • Lihong Zhu; Wuling Liu; Jiahan Qin; Ye Shao; Shaoyang Tan; Jun Wang High Power 780nm Broad- Area DFB Laser with Narrow Spectral Width, IEEE Photonics Journal (2024), p. 1 | DOI:10.1109/jphot.2024.3507802
  • Yuqi Zhang; Xun Li; Jia Zhao Dynamic Modeling of Stress-Induced Defect Expansion in VCSELs, IEEE Photonics Journal, Volume 16 (2024) no. 3, p. 1 | DOI:10.1109/jphot.2024.3401142
  • Khouloud Abdelli; Helmut Grießer; Stephan Pachnicke An Interpretable Machine Learning Approach for Laser Lifetime Prediction, Journal of Lightwave Technology, Volume 42 (2024) no. 6, p. 2094 | DOI:10.1109/jlt.2023.3336256
  • Visarute Pinrod; Wireeya Chawjiraphan; Khoonsake Segkhoonthod; Kriangkai Hanchaisri; Phornpol Tantiwathanapong; Preedee Pinpradup; Thitirat Putnin; Dechnarong Pimalai; Kiatnida Treerattrakoon; Ubon Cha’on; Sirirat Anutrakulchai; Deanpen Japrung Development of a High-Accuracy, Low-Cost, and Portable Fluorometer with Smartphone Application for the Detection of Urinary Albumin towards the Early Screening of Chronic Kidney and Renal Diseases, Biosensors, Volume 13 (2023) no. 9, p. 876 | DOI:10.3390/bios13090876
  • 张玉岐 Zhang Yuqi; 左致远 Zuo Zhiyuan; 赵佳 Zhao Jia 垂直腔面发射激光器中位错形成及扩展特性分析, Laser Optoelectronics Progress, Volume 60 (2023) no. 5, p. 0514004 | DOI:10.3788/lop213162
  • Eamonn T. Hughes; Gunnar Kusch; Jennifer Selvidge; Bastien Bonef; Justin Norman; Chen Shang; John E. Bowers; Rachel A. Oliver; Kunal Mukherjee Dislocation‐Induced Structural and Luminescence Degradation in InAs Quantum Dot Emitters on Silicon, physica status solidi (a), Volume 220 (2023) no. 14 | DOI:10.1002/pssa.202300114
  • Tiago Gomes; Ricardo Roriz; Luís Cunha; Andreas Ganal; Narciso Soares; Teresa Araújo; João Monteiro Evaluation and Testing System for Automotive LiDAR Sensors, Applied Sciences, Volume 12 (2022) no. 24, p. 13003 | DOI:10.3390/app122413003
  • Yue Song; Zhiyong Lv; Jiaming Bai; Shen Niu; Zibo Wu; Li Qin; Yongyi Chen; Lei Liang; Yuxin Lei; Peng Jia; Xiaonan Shan; Lijun Wang Processes of the Reliability and Degradation Mechanism of High-Power Semiconductor Lasers, Crystals, Volume 12 (2022) no. 6, p. 765 | DOI:10.3390/cryst12060765
  • Bangguo Wang; Shaoyang Tan; Li Zhou; Zhicheng Zhang; Yao Xiao; Wuling Liu; Yudan Gou; Guoliang Deng; Jun Wang High Reliability 808nm Laser Diodes With Output Power Over 19W Under CW Operation, IEEE Photonics Technology Letters, Volume 34 (2022) no. 6, p. 349 | DOI:10.1109/lpt.2022.3156913
  • Yuqi Zhang; Jia Zhao; Yuan Lu; Youlin Gu; Siting Chen, International Conference on Optoelectronic Materials and Devices (ICOMD 2021) (2022), p. 67 | DOI:10.1117/12.2628609
  • Khouloud Abdelli; Helmut Grieser; Stephan Pachnicke A Machine Learning-Based Framework for Predictive Maintenance of Semiconductor Laser for Optical Communication, Journal of Lightwave Technology, Volume 40 (2022) no. 14, p. 4698 | DOI:10.1109/jlt.2022.3163579
  • Khouloud Abdelli; Helmut Grieser; Christian Neumeyr; Robert Hohenleitner; Stephan Pachnicke Degradation Prediction of Semiconductor Lasers Using Conditional Variational Autoencoder, Journal of Lightwave Technology, Volume 40 (2022) no. 18, p. 6213 | DOI:10.1109/jlt.2022.3188831
  • Eleftherios Terry R. Farmakis; Franziska Beer; Ioannis Tzoutzas; Christoph Kurzmann; Hassan Ali Shokoohi-Tabrizi; Nikos Pantazis; Andreas Moritz Influence of Laser Irradiation Settings, during Diode-Assisted Endodontics, on the Intraradicular Adhesion of Self-Etch and Self-Curing Luting Cement during Restoration—An Ex Vivo Study, Materials, Volume 15 (2022) no. 7, p. 2531 | DOI:10.3390/ma15072531
  • Shabnam Dadgostar; José Luis Pura; Irene Mediavilla; Jorge Souto; Juan Jimenez Catastrophic optical damage in 808 nm broad area laser diodes: a study of the dark line defect propagation, Optics Express, Volume 30 (2022) no. 23, p. 42624 | DOI:10.1364/oe.463313
  • Vicky Wenqing Xue; Iris Xiaoxue Yin; John Yun Niu; Kenneth Luk; Edward Chin Man Lo; Chun Hung Chu Power Output of Two Semiconductor Lasers: An Observational Study, Photonics, Volume 9 (2022) no. 4, p. 219 | DOI:10.3390/photonics9040219
  • Samuel K.K. Lam; Daniel T. Cassidy Multi-Component Model for Semiconductor Laser Degradation, Advanced Laser Diode Reliability (2021), p. 51 | DOI:10.1016/b978-1-78548-154-3.50002-1
  • S Dadgostar; J Souto; J Jiménez CL as a tool for device characterisation: the case of laser diode degradation, Nano Express, Volume 2 (2021) no. 1, p. 014001 | DOI:10.1088/2632-959x/abdc3d
  • Tianyu Sun; Lei Qiao; Mingjun Xia Effective Failure Analysis for Packaged Semiconductor Lasers with a Simple Sample Preparation and Home-Made PEM System, Photonics, Volume 8 (2021) no. 6, p. 184 | DOI:10.3390/photonics8060184
  • Pak Hung Chan; Gunwant Dhadyalla; Valentina Donzella A Framework to Analyze Noise Factors of Automotive Perception Sensors, IEEE Sensors Letters, Volume 4 (2020) no. 6, p. 1 | DOI:10.1109/lsens.2020.2996428
  • Huixin Xiu; Peng Xu; Pengyan Wen; Yang Zhang; Junhe Yang Rapid degradation of InGaN/GaN green laser diodes, Superlattices and Microstructures, Volume 142 (2020), p. 106517 | DOI:10.1016/j.spmi.2020.106517
  • Khouloud Abdelli; Danish Rafique; Stephan Pachnicke, 2019 21st International Conference on Transparent Optical Networks (ICTON) (2019), p. 1 | DOI:10.1109/icton.2019.8840267
  • Jorge Souto; José Luis Pura; Alfredo Torres; Juan Jimenéz; Mark S. Zediker, High-Power Diode Laser Technology XVII (2019), p. 23 | DOI:10.1117/12.2507435
  • Doosan Back; Kevin P. Drummond; Michael D. Sinanis; Justin A. Weibel; Suresh V. Garimella; Dimitrios Peroulis; David B. Janes Design, Fabrication, and Characterization of a Compact Hierarchical Manifold Microchannel Heat Sink Array for Two-Phase Cooling, IEEE Transactions on Components, Packaging and Manufacturing Technology, Volume 9 (2019) no. 7, p. 1291 | DOI:10.1109/tcpmt.2019.2899648
  • D Pierścińska Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers, Journal of Physics D: Applied Physics, Volume 51 (2018) no. 1, p. 013001 | DOI:10.1088/1361-6463/aa9812
  • J. Souto; J. L. Pura; J. Jimenez, 2017 IEEE High Power Diode Lasers and Systems Conference (HPD) (2017), p. 57 | DOI:10.1109/hpd.2017.8261098
  • Mark S. Zediker; J. Souto; J. L. Pura; A. Torres; J. Jiménez, High-Power Diode Laser Technology XV, Volume 10086 (2017), p. 100860P | DOI:10.1117/12.2251890
  • Jorge Souto; José Luis Pura; Juan Jiménez Nanoscale effects on the thermal and mechanical properties of AlGaAs/GaAs quantum well laser diodes: influence on the catastrophic optical damage, Journal of Physics D: Applied Physics, Volume 50 (2017) no. 23, p. 235101 | DOI:10.1088/1361-6463/aa6fbd
  • M Guina; A Rantamäki; A Härkönen Optically pumped VECSELs: review of technology and progress, Journal of Physics D: Applied Physics, Volume 50 (2017) no. 38, p. 383001 | DOI:10.1088/1361-6463/aa7bfd
  • Žydrūnas Podlipskas; Ramūnas Aleksiejūnas; Saulius Nargelas; Jonas Jurkevičius; Jūras Mickevičius; Arūnas Kadys; Gintautas Tamulaitis; Michael S. Shur; Max Shatalov; Jinwei Yang; Remis Gaska Photomodification of carrier lifetime and diffusivity in AlGaN epitaxial layers, Current Applied Physics, Volume 16 (2016) no. 6, p. 633 | DOI:10.1016/j.cap.2016.03.010
  • Mark S. Zediker; J. Souto; J. L. Pura; A. Torres; J. Jiménez; M. Bettiati; F. J. Laruelle, High-Power Diode Laser Technology and Applications XIV, Volume 9733 (2016), p. 973306 | DOI:10.1117/12.2212953
  • J. Souto; J.L. Pura; A. Torres; J. Jiménez; M. Bettiati; F.J. Laruelle Catastrophic optical damage of high power InGaAs/AlGaAs laser diodes, Microelectronics Reliability, Volume 64 (2016), p. 627 | DOI:10.1016/j.microrel.2016.07.038
  • Krassimir Panajotov; Marc Sciamanna; Angel Valle; Rainer Michalzik; G. Le Galès; S. Joly; G. Pedroza; A. Morisset; F. Laruelle; L. Béchou, Semiconductor Lasers and Laser Dynamics VII, Volume 9892 (2016), p. 98921Y | DOI:10.1117/12.2227771
  • Juan Jimenez; Jens W. Tomm Cathodoluminescence, Spectroscopic Analysis of Optoelectronic Semiconductors, Volume 202 (2016), p. 213 | DOI:10.1007/978-3-319-42349-4_5
  • Alexei L. Glebov; Paul O. Leisher; Martin Wölz; Martin Zorn; Agnieszka Pietrzak; Alex Kindsvater; Jens Meusel; Ralf Hülsewede; Jürgen Sebastian, Components and Packaging for Laser Systems, Volume 9346 (2015), p. 934608 | DOI:10.1117/12.2077445
  • Mark S. Zediker; J. Souto; J. L. Pura; M. Rodríguez; J. Anaya; A. Torres; J. Jimenéz, High-Power Diode Laser Technology and Applications XIII, Volume 9348 (2015), p. 93480O | DOI:10.1117/12.2079464
  • Matthias M. Karow; Nikolai N. Faleev; Aymeric Maros; Christiana B. Honsberg Defect Creation in InGaAs/GaAs Multiple Quantum Wells – II. Optical Properties, Journal of Crystal Growth, Volume 425 (2015), p. 49 | DOI:10.1016/j.jcrysgro.2015.03.048
  • Haidong Yan; Yunhui Mei; Xin Li; Pu Zhang; Guo-Quan Lu Degradation of high power single emitter laser modules using nanosilver paste in continuous pulse conditions, Microelectronics Reliability, Volume 55 (2015) no. 12, p. 2532 | DOI:10.1016/j.microrel.2015.07.037
  • Guillaume Pedroza; Laurent Bechou; Yves Ousten; Lip Sun How; Olivier Gilard; Jean-Luc Goudard; Francois Laruelle, 2014 IEEE Aerospace Conference (2014), p. 1 | DOI:10.1109/aero.2014.6836254
  • Lu Guoguang; Lai Canxiong; Huang Yun; En Yunfei, 2013 14th International Conference on Electronic Packaging Technology (2013), p. 761 | DOI:10.1109/icept.2013.6756576
  • Tanuj Saxena; Gintautas Tamulaitis; Max Shatalov; Jinwei Yang; Remis Gaska; Michael S. Shur Low threshold for optical damage in AlGaN epilayers and heterostructures, Journal of Applied Physics, Volume 114 (2013) no. 20 | DOI:10.1063/1.4834520
  • V. Hortelano; J. Anaya; J. Souto; J. Jiménez; J. Perinet; F. Laruelle Defect signatures in degraded high power laser diodes, Microelectronics Reliability, Volume 53 (2013) no. 9-11, p. 1501 | DOI:10.1016/j.microrel.2013.07.071
  • M. F. Ugarte; L. Chávarri; S. Briz Note: Design of a dose-controlled phototherapy system based on hyperspectral studies, Review of Scientific Instruments, Volume 84 (2013) no. 2 | DOI:10.1063/1.4790412
  • Giuseppe Tandoi; Charles N. Ironside; John H. Marsh; Ann Catrina Bryce Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers, IEEE Journal of Quantum Electronics, Volume 48 (2012) no. 3, p. 318 | DOI:10.1109/jqe.2011.2180365
  • A R Weidberg VCSEL reliability in ATLAS and development of robust arrays, Journal of Instrumentation, Volume 7 (2012) no. 01, p. C01098 | DOI:10.1088/1748-0221/7/01/c01098
  • Sanna Ranta; Miki Tavast; Tomi Leinonen; Ryan Epstein; Mircea Guina Narrow linewidth 1118/559 nm VECSEL based on strain compensated GaInAs/GaAs quantum-wells for laser cooling of Mg-ions, Optical Materials Express, Volume 2 (2012) no. 8, p. 1011 | DOI:10.1364/ome.2.001011
  • T. Leinonen; V.-M. Korpijärvi; A. Härkönen; M. Guina 7.4 W yellow GaInNAs-based semiconductor disk laser, Electronics Letters, Volume 47 (2011) no. 20, p. 1139 | DOI:10.1049/el.2011.2282
  • Li Fan; Chuanshun Cao; G. Thaler; B. Caliva; I. Ai; S. Das; R. Walker; Linfei Zeng; M. McElhinney; P. Thiagarajan Record High-Temperature Long-Pulse Operation of 8xx-nm Diode Laser Bar with Aluminum-Free Active Region, IEEE Journal of Selected Topics in Quantum Electronics, Volume 17 (2011) no. 6, p. 1727 | DOI:10.1109/jstqe.2011.2115234
  • G. Tandoi; C. Ironside; A. C. Bryce Non-Absorbing Mirrors for Quantum Well Colliding Pulse Mode-Locked Lasers, IEEE Photonics Technology Letters (2011) | DOI:10.1109/lpt.2010.2103935
  • L. Kirkup; W. Kalceff; G. McCredie Effect of injection current on the repeatability of laser diode junction voltage-temperature measurements, Journal of Applied Physics, Volume 101 (2007) no. 2 | DOI:10.1063/1.2427097
  • J. Jiménez; M. Avella; O. Martínez Raman and luminescence probes for the study of compound semiconductors, Thin Solid Films, Volume 515 (2007) no. 10, p. 4412 | DOI:10.1016/j.tsf.2006.07.113
  • Antti Tukiainen; Lauri Toikkanen; Matti Haavisto; Vesa Erojrvi; Ville Rimpilinen; Jukka Viheril; Markus Pessa AlInP–AlGaInP Quantum-Well Lasers Grown by Molecular Beam Epitaxy, IEEE Photonics Technology Letters, Volume 18 (2006) no. 21, p. 2257 | DOI:10.1109/lpt.2006.884730
  • M. Avella; M. Pommiés; J. Jiménez; M. Bettiati; G. Hallais; V. Lemonon Cathodoluminescence spectral imaging as a technique for the study of cavity degradation of high-power QW lasers, Materials Science in Semiconductor Processing, Volume 9 (2006) no. 1-3, p. 204 | DOI:10.1016/j.mssp.2006.01.061
  • M. Pommiès; M. Avella; E. Cánovas; J. Jiménez; T. Fillardet; M. Oudart; J. Nagle Cation intermixing at quantum well/barriers interfaces in aged AlGaAs-based high-power laser diodes bars, Applied Physics Letters, Volume 86 (2005) no. 13 | DOI:10.1063/1.1891286

Cité par 57 documents. Sources : Crossref

Commentaires - Politique