[Structure électronique des nanotubes de carbone]
This paper is a review of the theoretical and experimental studies devoted so far to the electronic structure of pure carbon nanotubes, including single-wall, multiwall, and ropes of single-wall nanotubes. A universal picture of the band structure of single-wall nanotubes is obtained by exploiting a particular helical symmetry. A brief description of the optical properties of the nanotubes is also presented. Potential applications of carbon nanotubes in nanoelectronics are described.
Cet article est une revue des acquis théoriques et expérimentaux sur la structure électronique des nanotubes de carbone, à la fois pour les tubes monofeuilles, multifeuillets et les faisceaux de nanotubes. Une vue unifiée de la structure de bandes électroniques des nanotubes monofeuillets est obtenue par application d'une symétrie hélicoı̈dale particulière. Une brêve description des propriétés optiques des nanotubes est aussi présentée. Les applications possibles des nanotubes de carbone en nanoélectronique sont décrites.
Mots-clés : Nanotubes de carbone, Structure de bandes électroniques, Nanoélectronique
Philippe Lambin 1
@article{CRPHYS_2003__4_9_1009_0, author = {Philippe Lambin}, title = {Electronic structure of carbon nanotubes}, journal = {Comptes Rendus. Physique}, pages = {1009--1019}, publisher = {Elsevier}, volume = {4}, number = {9}, year = {2003}, doi = {10.1016/S1631-0705(03)00101-4}, language = {en}, }
Philippe Lambin. Electronic structure of carbon nanotubes. Comptes Rendus. Physique, carbon nanotubes: state of the art and applications, Volume 4 (2003) no. 9, pp. 1009-1019. doi : 10.1016/S1631-0705(03)00101-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00101-4/
[1] Phys. Rev. Lett., 68 (1992), pp. 631-634
[2] Phys. Rev. Lett., 68 (1992), pp. 1579-1581
[3] Chem. Phys. Lett., 191 (1992), pp. 469-472
[4] Appl. Phys. Lett., 60 (1992), pp. 2204-2206
[5] Chem. Phys., 281 (2002), pp. 429-445
[6] Synth. Metals, 9 (1984), p. 265
[7] Phys. Rev. B, 46 (1992), pp. 1804-1811
[8] Intern. J. Quantum Chem., 63 (1997), pp. 637-644
[9] Phys. Rev. Lett., 79 (1997), pp. 5086-5089
[10] Phys. Rev., 71 (1947), pp. 622-634
[11] Phys. Rev. B, 58 (1998), p. R16016-R16019
[12] Phys. Rev. B, 47 (1993), pp. 5485-5488
[13] Nature, 391 (1998), pp. 59-62
[14] Nature, 391 (1998), pp. 62-64
[15] Science, 412 (2001), pp. 617-620
[16] Phys. Rev. Lett., 88 (2002), p. 066804
[17] Phys. Rev. Lett., 78 (1997), pp. 1932-1935
[18] Phys. Rev. B, 61 (2000), pp. 7308-7311
[19] Phys. Rev. B, 64 (2001), p. 113402
[20] Carbon, 33 (1995), pp. 893-902
[21] Phys. Rev. B, 60 (1999), p. R11305-R11308
[22] Phys. Rev. Lett., 84 (2000), pp. 5604-5607
[23] Science, 292 (2001), pp. 702-705
[24] Phys. Rev. B, 47 (1993), pp. 1708-1711
[25] Phys. Rev. Lett., 72 (1994), pp. 1878-1881
[26] Phys. Rev. B, 65 (2002), p. 155411
[27] Phys. Rev. Lett., 81 (1998), pp. 2506-2509
[28] Appl. Phys. A, 68 (1999), pp. 275-282
[29] Phys. Rev. B, 66 (2002), p. 035412
[30] Phys. Rev. B, 56 (1997), pp. 3571-3573
[31] J. Phys.: Condens. Matter, 6 (1994), pp. 3697-3706
[32] Phys. Rev. Lett., 82 (1999), pp. 1225-1228
[33] Phys. Rev. B, 57 (1998), p. R15037-R15039
[34] Phys. Rev. B, 61 (2000), pp. 2981-2990
[35] Phys. Rev. B, 55 (1997), pp. 6820-6823
[36] Phys. Rev. B, 60 (1999), pp. 13874-13878
[37] Phys. Rev. B, 60 (1999), pp. 13824-13830
[38] Accounts Chem. Res., 35 (2002), pp. 1063-1069
[39] Chem. Phys. Lett., 245 (1995), pp. 85-89
[40] Science, 283 (1999), pp. 52-55
[41] Science, 275 (1997), pp. 187-191
[42] Synt. Metals, 103 (1999), pp. 2555-2558
[43] Chem. Phys. Lett., 305 (1999), pp. 370-374
[44] Phys. Rev. Lett., 79 (1997), pp. 2738-2741
[45] Appl. Phys. Lett., 75 (1999), pp. 2217-2219
[46] Science, 297 (2002), pp. 593-596
[47] Europhys. Lett., 29 (1995), pp. 43-48
[48] Nature, 391 (1998), pp. 466-468
[49] Phys. Rev. Lett., 82 (1999), pp. 2548-2551
[50] J. Mater. Res., 9 (1994), pp. 259-262
[51] Appl. Phys. Lett., 75 (1999), pp. 2755-2757
[52] Phys. Rev. B, 62 (2000), pp. 5129-5135
[53] Appl. Phys. Lett., 73 (1998), pp. 3680-3682
[54] J. Appl. Phys., 73 (1993), pp. 494-500
[55] Progress in Fullerene Research (H. Kuzmany; J. Fink; M. Mehring; S. Roth, eds.), World Scientific, Singapore, 1994, pp. 130-134
[56] Phys. Rev. B, 58 (1998), p. R16001-R16004
[57] Phys. Rev. Lett., 76 (1996), pp. 971-974
[58] Science, 271 (1996), p. 1232
[59] Phys. Rev. B, 49 (1994), pp. 5643-5649
[60] Science, 291 (2001), pp. 97-100
[61] Phys. Rev. Lett., 85 (2000), pp. 150-153
[62] Phys. Rev. Lett., 84 (2000), pp. 4693-4696
[63] Nature, 402 (1999), pp. 273-276
[64] Appl. Phys. Lett., 80 (2002), pp. 4027-4029
[65] Appl. Phys. Lett., 79 (2001), pp. 1351-1353
[66] Phys. Rev. Lett., 89 (2002), p. 106801
[67] Phys. Rev. Lett., 89 (2002), p. 126801
[68] Nano Lett., 2 (2002), pp. 761-764
[69] Science, 287 (2000), pp. 1801-1804
[70] Nature, 393 (1998), pp. 49-52
[71] Appl. Phys. Lett., 73 (1998), pp. 2447-2449
[72] Science, 294 (2001), pp. 1317-1320
[73] Appl. Phys. Lett., 80 (2002), pp. 3817-3819
[74] Nano Lett., 1 (2001), pp. 453-456
[75] Nano Lett., 2 (2002), pp. 755-759
[76] Appl. Phys. Lett., 81 (2002), pp. 3260-3262
[77] Science, 292 (2001), pp. 706-709
- Highly conductive hybrid carbon nanotube fibers: Strategies and future directions for replacing copper with next-generation conductors, Composites Part B: Engineering, Volume 300 (2025), p. 112471 | DOI:10.1016/j.compositesb.2025.112471
- Carbon Nanotube Marvels: Unveiling Synthetic Methods and Pharmaceutical Frontiers in Targeted Delivery, Nanocomposites - Properties, Preparations and Applications, Volume 5 (2024) | DOI:10.5772/intechopen.114401
- Formation of Amorphous Carbon Multi‐Walled Nanotubes from Random Initial Configurations, physica status solidi (b), Volume 260 (2023) no. 3 | DOI:10.1002/pssb.202200527
- Soldering carbon nanotube fibers by targeted electrothermal-induced carbon deposition, Carbon, Volume 121 (2017), p. 242 | DOI:10.1016/j.carbon.2017.05.091
- Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring, Advanced Functional Materials, Volume 24 (2014) no. 24, p. 3661 | DOI:10.1002/adfm.201303716
- Realizing one-dimensional quantum and high-frequency transport features in aligned single-walled carbon nanotube ropes, Journal of Applied Physics, Volume 116 (2014) no. 2 | DOI:10.1063/1.4886758
- Chirality-dependent properties of carbon nanotubes: electronic structure, optical dispersion properties, Hamaker coefficients and van der Waals–London dispersion interactions, RSC Adv., Volume 3 (2013) no. 3, p. 823 | DOI:10.1039/c2ra20083j
- Doped Carbon Nanotubes: (X:CNTs), Carbon Meta‐Nanotubes (2011), p. 41 | DOI:10.1002/9781119954743.ch2
- Carbon Nanotubes, Multi‐Walled, Encyclopedia of Inorganic and Bioinorganic Chemistry (2011) | DOI:10.1002/9781119951438.eibc0323
- Graphene: learning from carbon nanotubes, J. Mater. Chem., Volume 21 (2011) no. 4, p. 919 | DOI:10.1039/c0jm02225j
- Physics of Carbon Nanostructures, Physical Properties of Ceramic and Carbon Nanoscale Structures (2011), p. 155 | DOI:10.1007/978-3-642-15778-3_5
- Electronic structures of [n]-cyclacenes (n = 6–12) and short, hydrogen-capped, carbon nanotubes, Faraday Discuss., Volume 145 (2010), p. 507 | DOI:10.1039/b906882a
- Van der Waals-London dispersion interaction framework for experimentally realistic carbon nanotube systems, International Journal of Materials Research, Volume 101 (2010) no. 1, p. 27 | DOI:10.3139/146.110250
- Soft X‐Ray Absorption and Emission Spectroscopy in the Studies of Nanomaterials, X‐Rays in Nanoscience (2010), p. 211 | DOI:10.1002/9783527632282.ch7
- X-ray absorption near edge structure/electron energy loss near edge structure calculation using the supercell orthogonalized linear combination of atomic orbitals method, Journal of Physics: Condensed Matter, Volume 21 (2009) no. 10, p. 104202 | DOI:10.1088/0953-8984/21/10/104202
- Probing quantum confinement of single-walled carbon nanotubes by resonant soft-x-ray emission spectroscopy, Applied Physics Letters, Volume 93 (2008) no. 2 | DOI:10.1063/1.2959058
- Spectral mixing formulations for van der Waals–London dispersion interactions between multicomponent carbon nanotubes, Journal of Applied Physics, Volume 104 (2008) no. 5 | DOI:10.1063/1.2975207
- From molecules to extended solids, Molecular Clusters (2007), p. 257 | DOI:10.1017/cbo9780511628887.008
- Carbon Nanotube Polymer Composites: Recent Developments in Mechanical Properties, Physical Properties of Polymers Handbook (2007), p. 585 | DOI:10.1007/978-0-387-69002-5_35
- van der Waals–London dispersion interactions for optically anisotropic cylinders: Metallic and semiconducting single-wall carbon nanotubes, Physical Review B, Volume 76 (2007) no. 4 | DOI:10.1103/physrevb.76.045417
- Carbon Nanotubes, Multi‐Walled, Encyclopedia of Inorganic Chemistry (2005) | DOI:10.1002/0470862106.ia360
- Efficient Isolation and Solubilization of Pristine Single‐Walled Nanotubes in Bile Salt Micelles, Advanced Functional Materials, Volume 14 (2004) no. 11, p. 1105 | DOI:10.1002/adfm.200400130
- Design of single-walled carbon nanotubes with a large two-photon absorption cross section, Physical Review B, Volume 70 (2004) no. 15 | DOI:10.1103/physrevb.70.155401
Cité par 23 documents. Sources : Crossref
Commentaires - Politique