Comptes Rendus
Electronic structure of carbon nanotubes
[Structure électronique des nanotubes de carbone]
Comptes Rendus. Physique, carbon nanotubes: state of the art and applications, Volume 4 (2003) no. 9, pp. 1009-1019.

Cet article est une revue des acquis théoriques et expérimentaux sur la structure électronique des nanotubes de carbone, à la fois pour les tubes monofeuilles, multifeuillets et les faisceaux de nanotubes. Une vue unifiée de la structure de bandes électroniques des nanotubes monofeuillets est obtenue par application d'une symétrie hélicoı̈dale particulière. Une brêve description des propriétés optiques des nanotubes est aussi présentée. Les applications possibles des nanotubes de carbone en nanoélectronique sont décrites.

This paper is a review of the theoretical and experimental studies devoted so far to the electronic structure of pure carbon nanotubes, including single-wall, multiwall, and ropes of single-wall nanotubes. A universal picture of the band structure of single-wall nanotubes is obtained by exploiting a particular helical symmetry. A brief description of the optical properties of the nanotubes is also presented. Potential applications of carbon nanotubes in nanoelectronics are described.

Publié le :
DOI : 10.1016/S1631-0705(03)00101-4
Keywords: Carbon nanotubes, Electron band structure, Joint density, Nanoelectronics
Mots-clés : Nanotubes de carbone, Structure de bandes électroniques, Nanoélectronique

Philippe Lambin 1

1 Département de physique, facultés universitaires N.D. de la paix, 61, rue de Bruxelles, B 5000 Namur, Belgium
@article{CRPHYS_2003__4_9_1009_0,
     author = {Philippe Lambin},
     title = {Electronic structure of carbon nanotubes},
     journal = {Comptes Rendus. Physique},
     pages = {1009--1019},
     publisher = {Elsevier},
     volume = {4},
     number = {9},
     year = {2003},
     doi = {10.1016/S1631-0705(03)00101-4},
     language = {en},
}
TY  - JOUR
AU  - Philippe Lambin
TI  - Electronic structure of carbon nanotubes
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 1009
EP  - 1019
VL  - 4
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-0705(03)00101-4
LA  - en
ID  - CRPHYS_2003__4_9_1009_0
ER  - 
%0 Journal Article
%A Philippe Lambin
%T Electronic structure of carbon nanotubes
%J Comptes Rendus. Physique
%D 2003
%P 1009-1019
%V 4
%N 9
%I Elsevier
%R 10.1016/S1631-0705(03)00101-4
%G en
%F CRPHYS_2003__4_9_1009_0
Philippe Lambin. Electronic structure of carbon nanotubes. Comptes Rendus. Physique, carbon nanotubes: state of the art and applications, Volume 4 (2003) no. 9, pp. 1009-1019. doi : 10.1016/S1631-0705(03)00101-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00101-4/

[1] J.W. Mintmire; B.I. Dunlap; C.T. White Phys. Rev. Lett., 68 (1992), pp. 631-634

[2] N. Hamada; S.I. Sawada; A. Oshiyama Phys. Rev. Lett., 68 (1992), pp. 1579-1581

[3] K. Tanaka; K. Okahara; M. Okada; T. Yamabe Chem. Phys. Lett., 191 (1992), pp. 469-472

[4] R. Saito; M. Fujita; G. Dresselhaus; M.S. Dresselhaus Appl. Phys. Lett., 60 (1992), pp. 2204-2206

[5] Ph. Avouris Chem. Phys., 281 (2002), pp. 429-445

[6] J.L. Brédas; B. Thémans; J.M. André; R.R. Chance; R. Silbey Synth. Metals, 9 (1984), p. 265

[7] R. Saito; M. Fujita; G. Dresselhaus; M.S. Dresselhaus Phys. Rev. B, 46 (1992), pp. 1804-1811

[8] K. Tanaka; H. Ago; T. Yamabe; K. Okahara; M. Okada Intern. J. Quantum Chem., 63 (1997), pp. 637-644

[9] C.L. Kane; L. Balents; M.P.A. Fisher Phys. Rev. Lett., 79 (1997), pp. 5086-5089

[10] P.R. Wallace Phys. Rev., 71 (1947), pp. 622-634

[11] M.A. Pimenta; A. Marucci; S.A. Empedocles; M.G. Bawendi; E.B. Hanlon; A.M. Rao; P.C. Eklund; R.E. Smalley; G. Dresselhaus; M.S. Dresselhaus Phys. Rev. B, 58 (1998), p. R16016-R16019

[12] C.T. White; D.H. Robertson; J.W. Mintmire Phys. Rev. B, 47 (1993), pp. 5485-5488

[13] J.W.G. Wildoer; L.C. Venema; A.G. Rinzler; R.E. Smalley; C. Dekker Nature, 391 (1998), pp. 59-62

[14] T.W. Odom; J.L. Huang; Ph. Kim; Ch.M. Lieber Nature, 391 (1998), pp. 62-64

[15] S.G. Lemay; J.W. Janssen; M. van den Hout; M. Mooij; M.J. Bronikowski; P.A. Willis; R.E. Smalley; L.P. Kouwenhoven; C. Dekker Science, 412 (2001), pp. 617-620

[16] M. Ouyang; J.L. Huang; C.M. Lieber Phys. Rev. Lett., 88 (2002), p. 066804

[17] C.L. Kane; E.J. Mele Phys. Rev. Lett., 78 (1997), pp. 1932-1935

[18] P.E. Lammert; V.H. Crespi Phys. Rev. B, 61 (2000), pp. 7308-7311

[19] A. Kleiner; S. Eggert Phys. Rev. B, 64 (2001), p. 113402

[20] J.W. Mintmire; C.T. White Carbon, 33 (1995), pp. 893-902

[21] A. Ugawa; A.G. Rinzler; D.B. Tanner Phys. Rev. B, 60 (1999), p. R11305-R11308

[22] C. Zhou; J. Kong; H. Dai Phys. Rev. Lett., 84 (2000), pp. 5604-5607

[23] M. Ouyang; J.L. Huang; C.L. Cheung; C.M. Lieber Science, 292 (2001), pp. 702-705

[24] J.Y. Yi; J. Bernholc Phys. Rev. B, 47 (1993), pp. 1708-1711

[25] X. Blase; L.X. Benedict; E.L. Shirley; S.G. Louie Phys. Rev. Lett., 72 (1994), pp. 1878-1881

[26] S. Reich; C. Thomsen; P. Ordejón Phys. Rev. B, 65 (2002), p. 155411

[27] J.W. Mintmire; C.T. White Phys. Rev. Lett., 81 (1998), pp. 2506-2509

[28] A. Rubio Appl. Phys. A, 68 (1999), pp. 275-282

[29] S. Reich; J. Maultzsch; C. Thomsen; P. Ordejón Phys. Rev. B, 66 (2002), p. 035412

[30] Ph. Lambin; A.A. Lucas Phys. Rev. B, 56 (1997), pp. 3571-3573

[31] P.J. Lin-Chung; A.K. Rajagopal J. Phys.: Condens. Matter, 6 (1994), pp. 3697-3706

[32] Ph. Kim; T. Odom; J.L. Huang; C.M. Lieber Phys. Rev. Lett., 82 (1999), pp. 1225-1228

[33] J.C. Charlier; Ph. Lambin Phys. Rev. B, 57 (1998), p. R15037-R15039

[34] R. Saito; G. Dresselhaus; M.S. Dresselhaus Phys. Rev. B, 61 (2000), pp. 2981-2990

[35] R. Heyd; A. Charlier; E. McRae Phys. Rev. B, 55 (1997), pp. 6820-6823

[36] L. Yang; M.P. Anantram; J. Han; J.P. Lu Phys. Rev. B, 60 (1999), pp. 13874-13878

[37] A. Rochefort; Ph. Avouris; F. Lesage; D.R. Salahub Phys. Rev. B, 60 (1999), pp. 13824-13830

[38] J.C. Charlier Accounts Chem. Res., 35 (2002), pp. 1063-1069

[39] Ph. Lambin; A. Fonseca; J.P. Vigneron; J.B. Nagy; A.A. Lucas Chem. Phys. Lett., 245 (1995), pp. 85-89

[40] L.C. Venema; J.W.G. Wildoer; J.W. Janssen; S.J. Tans; H.L.J. Temminck Tuinstra; L.P. Kouwenhoven; C. Dekker Science, 283 (1999), pp. 52-55

[41] A.M. Rao; E. Richter; S. Bandow; B. Chase; P.C. Eklund; K.A. Williams; S. Fang; K.R. Subbaswamy; M. Menon; A. Thess; R.E. Smalley; G. Dresselhaus; M.S. Dresselhaus Science, 275 (1997), pp. 187-191

[42] H. Kataura; Y. Kumazawa; Y. Maniwa; I. Umezu; S. Suzuki; Y. Ohtsukada; Y. Achiba Synt. Metals, 103 (1999), pp. 2555-2558

[43] P. Petit; C. Mathis; C. Journet; P. Bernier Chem. Phys. Lett., 305 (1999), pp. 370-374

[44] E. Richter; K.R. Subbaswamy Phys. Rev. Lett., 79 (1997), pp. 2738-2741

[45] O. Jost; A.A. Gorbunov; W. Pompe; T. Pichler; R. Friedlein; M. Knupfer; M. Reibold; H.D. Bauer; L. Dunsch; M.S. Golden; J. Fink Appl. Phys. Lett., 75 (1999), pp. 2217-2219

[46] M.J. OConnell; S.M. Bachilo; C.B. Huffman; V.C. Moore; M.S. Strano; E.H. Haroz; K.L. Rialon; P.J. Boul; W.H. Noon; C. Kittrell; J. Ma; R.H. Hauge; R.B. Weisman; R.E. Smalley Science, 297 (2002), pp. 593-596

[47] J.C. Charlier; X. Gonze; J.P. Michenaud Europhys. Lett., 29 (1995), pp. 43-48

[48] P. Delaney; H.J. Choi; J. Ihm; S.G. Louie; M.L. Cohen Nature, 391 (1998), pp. 466-468

[49] P. Chen; X. Wu; X. Sun; J. Lin; W. Ji; K.L. Tan Phys. Rev. Lett., 82 (1999), pp. 2548-2551

[50] C.H. Olk; J.P. Heremans J. Mater. Res., 9 (1994), pp. 259-262

[51] A. Hassanien; M. Tokumoto; S. Ohshima; Y. Kuriki; F. Ikazaki; K. Uchida; M. Yumara Appl. Phys. Lett., 75 (1999), pp. 2755-2757

[52] Ph. Lambin; V. Meunier; A. Rubio Phys. Rev. B, 62 (2000), pp. 5129-5135

[53] L.P. Biró; P.A. Thiry; Ph. Lambin; C. Journet; P. Bernier; A.A. Lucas Appl. Phys. Lett., 73 (1998), pp. 3680-3682

[54] R. Saito; G. Dresselhaus; M.S. Dresselhaus J. Appl. Phys., 73 (1993), pp. 494-500

[55] Ph. Lambin; J.C. Charlier; J.P. Michenaud Progress in Fullerene Research (H. Kuzmany; J. Fink; M. Mehring; S. Roth, eds.), World Scientific, Singapore, 1994, pp. 130-134

[56] Y.K. Kwon; D. Tomanek Phys. Rev. B, 58 (1998), p. R16001-R16004

[57] L. Chico; V.H. Crespi; L.X. Benedict; S.G. Louie; M.L. Cohen Phys. Rev. Lett., 76 (1996), pp. 971-974

[58] R.F. Service Science, 271 (1996), p. 1232

[59] B.I. Dunlap Phys. Rev. B, 49 (1994), pp. 5643-5649

[60] M. Ouyang; J.L. Huang; Ch.M. Lieber Science, 291 (2001), pp. 97-100

[61] A.O. Odintsov Phys. Rev. Lett., 85 (2000), pp. 150-153

[62] F. Leonnard; J. Tersoff Phys. Rev. Lett., 84 (2000), pp. 4693-4696

[63] Z. Yao; H.W.Ch. Postma; L. Balents; C. Dekker Nature, 402 (1999), pp. 273-276

[64] T. Yamada Appl. Phys. Lett., 80 (2002), pp. 4027-4029

[65] J.O. Lee; H. Oh; J.R. Kim; K. Kang; J.J. Kim; J. Kim; K.H. Yoo Appl. Phys. Lett., 79 (2001), pp. 1351-1353

[66] S. Heinze; J. Tersoff; R. Martel; V. Derycke; J. Appenzeller; Ph. Avouris Phys. Rev. Lett., 89 (2002), p. 106801

[67] J. Appenzeller; J. Knoch; V. Derycke; R. Martel; S. Wind; Ph. Avouris Phys. Rev. Lett., 89 (2002), p. 126801

[68] M. Radosavljevic; M. Freitag; K.V. Thadani; A.T. Johnson Nano Lett., 2 (2002), pp. 761-764

[69] P.G. Collins; K. Bradley; M. Ishigami; A. Zettl Science, 287 (2000), pp. 1801-1804

[70] S.T. Tans; A.R.M. Verschueren; C. Dekker Nature, 393 (1998), pp. 49-52

[71] R. Martel; T. Schmidt; H.R. Shea; T. Hertel; Ph. Avouris Appl. Phys. Lett., 73 (1998), pp. 2447-2449

[72] A. Bachtold; P. Hadley; T. Nakanishi; C. Dekker Science, 294 (2001), pp. 1317-1320

[73] S. Wind; J. Appenzeller; R. Martel; V. Derycke; Ph. Avouris Appl. Phys. Lett., 80 (2002), pp. 3817-3819

[74] V. Derycke; R. Martel; J. Appenzeller; Ph. Avouris Nano Lett., 1 (2001), pp. 453-456

[75] M.S. Fuhrer; B.M. Kim; T. Dürkop; T. Brintlinger Nano Lett., 2 (2002), pp. 755-759

[76] J.B. Cui; R. Sordan; M. Burghard; K. Kern Appl. Phys. Lett., 81 (2002), pp. 3260-3262

[77] P.G. Collins; M.S. Arnold; Ph. Avouris Science, 292 (2001), pp. 706-709

Cité par Sources :

Commentaires - Politique