Comptes Rendus
Electronic structure of carbon nanotubes
[Structure électronique des nanotubes de carbone]
Comptes Rendus. Physique, carbon nanotubes: state of the art and applications, Volume 4 (2003) no. 9, pp. 1009-1019.

This paper is a review of the theoretical and experimental studies devoted so far to the electronic structure of pure carbon nanotubes, including single-wall, multiwall, and ropes of single-wall nanotubes. A universal picture of the band structure of single-wall nanotubes is obtained by exploiting a particular helical symmetry. A brief description of the optical properties of the nanotubes is also presented. Potential applications of carbon nanotubes in nanoelectronics are described.

Cet article est une revue des acquis théoriques et expérimentaux sur la structure électronique des nanotubes de carbone, à la fois pour les tubes monofeuilles, multifeuillets et les faisceaux de nanotubes. Une vue unifiée de la structure de bandes électroniques des nanotubes monofeuillets est obtenue par application d'une symétrie hélicoı̈dale particulière. Une brêve description des propriétés optiques des nanotubes est aussi présentée. Les applications possibles des nanotubes de carbone en nanoélectronique sont décrites.

Publié le :
DOI : 10.1016/S1631-0705(03)00101-4
Keywords: Carbon nanotubes, Electron band structure, Joint density, Nanoelectronics
Mots-clés : Nanotubes de carbone, Structure de bandes électroniques, Nanoélectronique

Philippe Lambin 1

1 Département de physique, facultés universitaires N.D. de la paix, 61, rue de Bruxelles, B 5000 Namur, Belgium
@article{CRPHYS_2003__4_9_1009_0,
     author = {Philippe Lambin},
     title = {Electronic structure of carbon nanotubes},
     journal = {Comptes Rendus. Physique},
     pages = {1009--1019},
     publisher = {Elsevier},
     volume = {4},
     number = {9},
     year = {2003},
     doi = {10.1016/S1631-0705(03)00101-4},
     language = {en},
}
TY  - JOUR
AU  - Philippe Lambin
TI  - Electronic structure of carbon nanotubes
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 1009
EP  - 1019
VL  - 4
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-0705(03)00101-4
LA  - en
ID  - CRPHYS_2003__4_9_1009_0
ER  - 
%0 Journal Article
%A Philippe Lambin
%T Electronic structure of carbon nanotubes
%J Comptes Rendus. Physique
%D 2003
%P 1009-1019
%V 4
%N 9
%I Elsevier
%R 10.1016/S1631-0705(03)00101-4
%G en
%F CRPHYS_2003__4_9_1009_0
Philippe Lambin. Electronic structure of carbon nanotubes. Comptes Rendus. Physique, carbon nanotubes: state of the art and applications, Volume 4 (2003) no. 9, pp. 1009-1019. doi : 10.1016/S1631-0705(03)00101-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00101-4/

[1] J.W. Mintmire; B.I. Dunlap; C.T. White Phys. Rev. Lett., 68 (1992), pp. 631-634

[2] N. Hamada; S.I. Sawada; A. Oshiyama Phys. Rev. Lett., 68 (1992), pp. 1579-1581

[3] K. Tanaka; K. Okahara; M. Okada; T. Yamabe Chem. Phys. Lett., 191 (1992), pp. 469-472

[4] R. Saito; M. Fujita; G. Dresselhaus; M.S. Dresselhaus Appl. Phys. Lett., 60 (1992), pp. 2204-2206

[5] Ph. Avouris Chem. Phys., 281 (2002), pp. 429-445

[6] J.L. Brédas; B. Thémans; J.M. André; R.R. Chance; R. Silbey Synth. Metals, 9 (1984), p. 265

[7] R. Saito; M. Fujita; G. Dresselhaus; M.S. Dresselhaus Phys. Rev. B, 46 (1992), pp. 1804-1811

[8] K. Tanaka; H. Ago; T. Yamabe; K. Okahara; M. Okada Intern. J. Quantum Chem., 63 (1997), pp. 637-644

[9] C.L. Kane; L. Balents; M.P.A. Fisher Phys. Rev. Lett., 79 (1997), pp. 5086-5089

[10] P.R. Wallace Phys. Rev., 71 (1947), pp. 622-634

[11] M.A. Pimenta; A. Marucci; S.A. Empedocles; M.G. Bawendi; E.B. Hanlon; A.M. Rao; P.C. Eklund; R.E. Smalley; G. Dresselhaus; M.S. Dresselhaus Phys. Rev. B, 58 (1998), p. R16016-R16019

[12] C.T. White; D.H. Robertson; J.W. Mintmire Phys. Rev. B, 47 (1993), pp. 5485-5488

[13] J.W.G. Wildoer; L.C. Venema; A.G. Rinzler; R.E. Smalley; C. Dekker Nature, 391 (1998), pp. 59-62

[14] T.W. Odom; J.L. Huang; Ph. Kim; Ch.M. Lieber Nature, 391 (1998), pp. 62-64

[15] S.G. Lemay; J.W. Janssen; M. van den Hout; M. Mooij; M.J. Bronikowski; P.A. Willis; R.E. Smalley; L.P. Kouwenhoven; C. Dekker Science, 412 (2001), pp. 617-620

[16] M. Ouyang; J.L. Huang; C.M. Lieber Phys. Rev. Lett., 88 (2002), p. 066804

[17] C.L. Kane; E.J. Mele Phys. Rev. Lett., 78 (1997), pp. 1932-1935

[18] P.E. Lammert; V.H. Crespi Phys. Rev. B, 61 (2000), pp. 7308-7311

[19] A. Kleiner; S. Eggert Phys. Rev. B, 64 (2001), p. 113402

[20] J.W. Mintmire; C.T. White Carbon, 33 (1995), pp. 893-902

[21] A. Ugawa; A.G. Rinzler; D.B. Tanner Phys. Rev. B, 60 (1999), p. R11305-R11308

[22] C. Zhou; J. Kong; H. Dai Phys. Rev. Lett., 84 (2000), pp. 5604-5607

[23] M. Ouyang; J.L. Huang; C.L. Cheung; C.M. Lieber Science, 292 (2001), pp. 702-705

[24] J.Y. Yi; J. Bernholc Phys. Rev. B, 47 (1993), pp. 1708-1711

[25] X. Blase; L.X. Benedict; E.L. Shirley; S.G. Louie Phys. Rev. Lett., 72 (1994), pp. 1878-1881

[26] S. Reich; C. Thomsen; P. Ordejón Phys. Rev. B, 65 (2002), p. 155411

[27] J.W. Mintmire; C.T. White Phys. Rev. Lett., 81 (1998), pp. 2506-2509

[28] A. Rubio Appl. Phys. A, 68 (1999), pp. 275-282

[29] S. Reich; J. Maultzsch; C. Thomsen; P. Ordejón Phys. Rev. B, 66 (2002), p. 035412

[30] Ph. Lambin; A.A. Lucas Phys. Rev. B, 56 (1997), pp. 3571-3573

[31] P.J. Lin-Chung; A.K. Rajagopal J. Phys.: Condens. Matter, 6 (1994), pp. 3697-3706

[32] Ph. Kim; T. Odom; J.L. Huang; C.M. Lieber Phys. Rev. Lett., 82 (1999), pp. 1225-1228

[33] J.C. Charlier; Ph. Lambin Phys. Rev. B, 57 (1998), p. R15037-R15039

[34] R. Saito; G. Dresselhaus; M.S. Dresselhaus Phys. Rev. B, 61 (2000), pp. 2981-2990

[35] R. Heyd; A. Charlier; E. McRae Phys. Rev. B, 55 (1997), pp. 6820-6823

[36] L. Yang; M.P. Anantram; J. Han; J.P. Lu Phys. Rev. B, 60 (1999), pp. 13874-13878

[37] A. Rochefort; Ph. Avouris; F. Lesage; D.R. Salahub Phys. Rev. B, 60 (1999), pp. 13824-13830

[38] J.C. Charlier Accounts Chem. Res., 35 (2002), pp. 1063-1069

[39] Ph. Lambin; A. Fonseca; J.P. Vigneron; J.B. Nagy; A.A. Lucas Chem. Phys. Lett., 245 (1995), pp. 85-89

[40] L.C. Venema; J.W.G. Wildoer; J.W. Janssen; S.J. Tans; H.L.J. Temminck Tuinstra; L.P. Kouwenhoven; C. Dekker Science, 283 (1999), pp. 52-55

[41] A.M. Rao; E. Richter; S. Bandow; B. Chase; P.C. Eklund; K.A. Williams; S. Fang; K.R. Subbaswamy; M. Menon; A. Thess; R.E. Smalley; G. Dresselhaus; M.S. Dresselhaus Science, 275 (1997), pp. 187-191

[42] H. Kataura; Y. Kumazawa; Y. Maniwa; I. Umezu; S. Suzuki; Y. Ohtsukada; Y. Achiba Synt. Metals, 103 (1999), pp. 2555-2558

[43] P. Petit; C. Mathis; C. Journet; P. Bernier Chem. Phys. Lett., 305 (1999), pp. 370-374

[44] E. Richter; K.R. Subbaswamy Phys. Rev. Lett., 79 (1997), pp. 2738-2741

[45] O. Jost; A.A. Gorbunov; W. Pompe; T. Pichler; R. Friedlein; M. Knupfer; M. Reibold; H.D. Bauer; L. Dunsch; M.S. Golden; J. Fink Appl. Phys. Lett., 75 (1999), pp. 2217-2219

[46] M.J. OConnell; S.M. Bachilo; C.B. Huffman; V.C. Moore; M.S. Strano; E.H. Haroz; K.L. Rialon; P.J. Boul; W.H. Noon; C. Kittrell; J. Ma; R.H. Hauge; R.B. Weisman; R.E. Smalley Science, 297 (2002), pp. 593-596

[47] J.C. Charlier; X. Gonze; J.P. Michenaud Europhys. Lett., 29 (1995), pp. 43-48

[48] P. Delaney; H.J. Choi; J. Ihm; S.G. Louie; M.L. Cohen Nature, 391 (1998), pp. 466-468

[49] P. Chen; X. Wu; X. Sun; J. Lin; W. Ji; K.L. Tan Phys. Rev. Lett., 82 (1999), pp. 2548-2551

[50] C.H. Olk; J.P. Heremans J. Mater. Res., 9 (1994), pp. 259-262

[51] A. Hassanien; M. Tokumoto; S. Ohshima; Y. Kuriki; F. Ikazaki; K. Uchida; M. Yumara Appl. Phys. Lett., 75 (1999), pp. 2755-2757

[52] Ph. Lambin; V. Meunier; A. Rubio Phys. Rev. B, 62 (2000), pp. 5129-5135

[53] L.P. Biró; P.A. Thiry; Ph. Lambin; C. Journet; P. Bernier; A.A. Lucas Appl. Phys. Lett., 73 (1998), pp. 3680-3682

[54] R. Saito; G. Dresselhaus; M.S. Dresselhaus J. Appl. Phys., 73 (1993), pp. 494-500

[55] Ph. Lambin; J.C. Charlier; J.P. Michenaud Progress in Fullerene Research (H. Kuzmany; J. Fink; M. Mehring; S. Roth, eds.), World Scientific, Singapore, 1994, pp. 130-134

[56] Y.K. Kwon; D. Tomanek Phys. Rev. B, 58 (1998), p. R16001-R16004

[57] L. Chico; V.H. Crespi; L.X. Benedict; S.G. Louie; M.L. Cohen Phys. Rev. Lett., 76 (1996), pp. 971-974

[58] R.F. Service Science, 271 (1996), p. 1232

[59] B.I. Dunlap Phys. Rev. B, 49 (1994), pp. 5643-5649

[60] M. Ouyang; J.L. Huang; Ch.M. Lieber Science, 291 (2001), pp. 97-100

[61] A.O. Odintsov Phys. Rev. Lett., 85 (2000), pp. 150-153

[62] F. Leonnard; J. Tersoff Phys. Rev. Lett., 84 (2000), pp. 4693-4696

[63] Z. Yao; H.W.Ch. Postma; L. Balents; C. Dekker Nature, 402 (1999), pp. 273-276

[64] T. Yamada Appl. Phys. Lett., 80 (2002), pp. 4027-4029

[65] J.O. Lee; H. Oh; J.R. Kim; K. Kang; J.J. Kim; J. Kim; K.H. Yoo Appl. Phys. Lett., 79 (2001), pp. 1351-1353

[66] S. Heinze; J. Tersoff; R. Martel; V. Derycke; J. Appenzeller; Ph. Avouris Phys. Rev. Lett., 89 (2002), p. 106801

[67] J. Appenzeller; J. Knoch; V. Derycke; R. Martel; S. Wind; Ph. Avouris Phys. Rev. Lett., 89 (2002), p. 126801

[68] M. Radosavljevic; M. Freitag; K.V. Thadani; A.T. Johnson Nano Lett., 2 (2002), pp. 761-764

[69] P.G. Collins; K. Bradley; M. Ishigami; A. Zettl Science, 287 (2000), pp. 1801-1804

[70] S.T. Tans; A.R.M. Verschueren; C. Dekker Nature, 393 (1998), pp. 49-52

[71] R. Martel; T. Schmidt; H.R. Shea; T. Hertel; Ph. Avouris Appl. Phys. Lett., 73 (1998), pp. 2447-2449

[72] A. Bachtold; P. Hadley; T. Nakanishi; C. Dekker Science, 294 (2001), pp. 1317-1320

[73] S. Wind; J. Appenzeller; R. Martel; V. Derycke; Ph. Avouris Appl. Phys. Lett., 80 (2002), pp. 3817-3819

[74] V. Derycke; R. Martel; J. Appenzeller; Ph. Avouris Nano Lett., 1 (2001), pp. 453-456

[75] M.S. Fuhrer; B.M. Kim; T. Dürkop; T. Brintlinger Nano Lett., 2 (2002), pp. 755-759

[76] J.B. Cui; R. Sordan; M. Burghard; K. Kern Appl. Phys. Lett., 81 (2002), pp. 3260-3262

[77] P.G. Collins; M.S. Arnold; Ph. Avouris Science, 292 (2001), pp. 706-709

  • Sungchan Jo; Anastasiia Mikhalchan; Seungki Hong; Soyeon Kim; Seo Gyun Kim; Seung Min Kim; Dae-Yoon Kim; Bon-Cheol Ku; Juan José Vilatela; Jun Yeon Hwang Highly conductive hybrid carbon nanotube fibers: Strategies and future directions for replacing copper with next-generation conductors, Composites Part B: Engineering, Volume 300 (2025), p. 112471 | DOI:10.1016/j.compositesb.2025.112471
  • Muhammad Zaman; Huma Hameed; Gamal A. Shazly; Mehreen Shahid; Ali Irfan; Muhammad Jamshed; Yousef A. Bin Jardan Carbon Nanotube Marvels: Unveiling Synthetic Methods and Pharmaceutical Frontiers in Targeted Delivery, Nanocomposites - Properties, Preparations and Applications, Volume 5 (2024) | DOI:10.5772/intechopen.114401
  • Chinonso Ugwumadu; Rajendra Thapa; Yahya Al-Majali; Jason Trembly; D. A. Drabold Formation of Amorphous Carbon Multi‐Walled Nanotubes from Random Initial Configurations, physica status solidi (b), Volume 260 (2023) no. 3 | DOI:10.1002/pssb.202200527
  • Jingyun Zou; Xiaohua Zhang; Chao Xu; Jingna Zhao; Yuntian T. Zhu; Qingwen Li Soldering carbon nanotube fibers by targeted electrothermal-induced carbon deposition, Carbon, Volume 121 (2017), p. 242 | DOI:10.1016/j.carbon.2017.05.091
  • Agnieszka Lekawa‐Raus; Jeff Patmore; Lukasz Kurzepa; John Bulmer; Krzysztof Koziol Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring, Advanced Functional Materials, Volume 24 (2014) no. 24, p. 3661 | DOI:10.1002/adfm.201303716
  • Siphephile Ncube; George Chimowa; Zivayi Chiguvare; Somnath Bhattacharyya Realizing one-dimensional quantum and high-frequency transport features in aligned single-walled carbon nanotube ropes, Journal of Applied Physics, Volume 116 (2014) no. 2 | DOI:10.1063/1.4886758
  • Rick F. Rajter; Roger H. French; W.Y. Ching; Rudolf Podgornik; V. Adrian Parsegian Chirality-dependent properties of carbon nanotubes: electronic structure, optical dispersion properties, Hamaker coefficients and van der Waals–London dispersion interactions, RSC Adv., Volume 3 (2013) no. 3, p. 823 | DOI:10.1039/c2ra20083j
  • Alain Pénicaud; Pierre Petit; John E. Fischer Doped Carbon Nanotubes: (X:CNTs), Carbon Meta‐Nanotubes (2011), p. 41 | DOI:10.1002/9781119954743.ch2
  • Rodney Andrews; Matthew C. Weisenberger; Dali Qian; Mark S. Meier; Kelby Cassity; Paul E. Yeary Carbon Nanotubes, Multi‐Walled, Encyclopedia of Inorganic and Bioinorganic Chemistry (2011) | DOI:10.1002/9781119951438.eibc0323
  • Liping Huang; Bin Wu; Gui Yu; Yunqi Liu Graphene: learning from carbon nanotubes, J. Mater. Chem., Volume 21 (2011) no. 4, p. 919 | DOI:10.1039/c0jm02225j
  • Stefano Bellucci; Alexander Malesevic Physics of Carbon Nanostructures, Physical Properties of Ceramic and Carbon Nanoscale Structures (2011), p. 155 | DOI:10.1007/978-3-642-15778-3_5
  • Daniel Sadowsky; Kristopher McNeill; Christopher J. Cramer Electronic structures of [n]-cyclacenes (n = 6–12) and short, hydrogen-capped, carbon nanotubes, Faraday Discuss., Volume 145 (2010), p. 507 | DOI:10.1039/b906882a
  • Rick Rajter; Roger H. French Van der Waals-London dispersion interaction framework for experimentally realistic carbon nanotube systems, International Journal of Materials Research, Volume 101 (2010) no. 1, p. 27 | DOI:10.3139/146.110250
  • Jinghua Guo Soft X‐Ray Absorption and Emission Spectroscopy in the Studies of Nanomaterials, X‐Rays in Nanoscience (2010), p. 211 | DOI:10.1002/9783527632282.ch7
  • Wai-Yim Ching; Paul Rulis X-ray absorption near edge structure/electron energy loss near edge structure calculation using the supercell orthogonalized linear combination of atomic orbitals method, Journal of Physics: Condensed Matter, Volume 21 (2009) no. 10, p. 104202 | DOI:10.1088/0953-8984/21/10/104202
  • Jun Zhong; Jauwern Chiou; Chungli Dong; Li Song; Chang Liu; Sishen Xie; Huiming Cheng; Way-Faung Pong; Chinglin Chang; Yangyuan Chen; Ziyu Wu; Jinghua Guo Probing quantum confinement of single-walled carbon nanotubes by resonant soft-x-ray emission spectroscopy, Applied Physics Letters, Volume 93 (2008) no. 2 | DOI:10.1063/1.2959058
  • Rick Rajter; Roger H. French; Rudi Podgornik; W. Y. Ching; V. Adrian Parsegian Spectral mixing formulations for van der Waals–London dispersion interactions between multicomponent carbon nanotubes, Journal of Applied Physics, Volume 104 (2008) no. 5 | DOI:10.1063/1.2975207
  • From molecules to extended solids, Molecular Clusters (2007), p. 257 | DOI:10.1017/cbo9780511628887.008
  • M. C. Weisenberger; Rodney Andrews; T. Rantell Carbon Nanotube Polymer Composites: Recent Developments in Mechanical Properties, Physical Properties of Polymers Handbook (2007), p. 585 | DOI:10.1007/978-0-387-69002-5_35
  • Rick F. Rajter; Rudi Podgornik; V. Adrian Parsegian; Roger H. French; W. Y. Ching van der Waals–London dispersion interactions for optically anisotropic cylinders: Metallic and semiconducting single-wall carbon nanotubes, Physical Review B, Volume 76 (2007) no. 4 | DOI:10.1103/physrevb.76.045417
  • Rodney Andrews; Matthew C. Weisenberger; Dali Qian; Mark S. Meier; Kelby Cassity; Paul E. Yeary Carbon Nanotubes, Multi‐Walled, Encyclopedia of Inorganic Chemistry (2005) | DOI:10.1002/0470862106.ia360
  • W. Wenseleers; I. I. Vlasov; E. Goovaerts; E. D. Obraztsova; A. S. Lobach; A. Bouwen Efficient Isolation and Solubilization of Pristine Single‐Walled Nanotubes in Bile Salt Micelles, Advanced Functional Materials, Volume 14 (2004) no. 11, p. 1105 | DOI:10.1002/adfm.200400130
  • W.-D. Cheng; D.-S. Wu; X.-D. Li; Y.-Z. Lan; H. Zhang; D.-G. Chen; Y.-J. Gong; Y.-C. Zhang; F.-F. Li; J. Shen; Z.-G. Kan Design of single-walled carbon nanotubes with a large two-photon absorption cross section, Physical Review B, Volume 70 (2004) no. 15 | DOI:10.1103/physrevb.70.155401

Cité par 23 documents. Sources : Crossref

Commentaires - Politique