Comptes Rendus
Spectroscopy and planetary atmospheres/Spectroscopie et atmosphères planétaires
Ultraviolet and visible spectroscopy and spaceborne remote sensing of the Earth's atmosphere
[Spectroscopie dans l'ultraviolet et le visible et télédétection spatiale de l'atmosphère terrestre]
Comptes Rendus. Physique, Volume 6 (2005) no. 8, pp. 836-847.

Les possibilités actuelles de mesure spectroscopique de la stratosphère et de la troposphère terrestres sont passées en revue avec les caractéristiques spectrales de l'atmosphère. Nous présentons également les principaux types et géométries de mesure et discutons les défis, qu'ils soient instrumentaux, spectroscopiques, ou concernant les modèles de transfert radiatif. Sont également présentés dans cet article les instruments satellitaires actuels et prévus, en détaillant leurs caractéristiques instrumentales, leurs couvertures spectrales et les molécules qui sont leurs cibles. Nous donnons des exemples d'observations au nadir dans les cas du NO2 stratosphérique et troposphérique, du BrO troposphérique au printemps polaire, du HCHO troposphérique total, et de l'ozone troposphérique. Nous montrons que le domaine est aujourd'hui suffisamment mur pour que des mesures globales de la pollution atmosphériques à partir de l'espace soit possibles.

Current capabilities for ultraviolet and visible spectroscopic measurements of the Earth's stratosphere and troposphere are reviewed. Atmospheric spectral properties are described. The major measurement geometries and types are presented. Instrumental, spectroscopic, and radiative transfer modeling challenges are discussed. Current and planned satellite instruments for this field, with their measurement properties, spectral coverage, and target molecules are presented. Measurement examples include stratospheric and tropospheric NO2, tropospheric BrO in the polar spring, global tropospheric HCHO, and tropospheric ozone measurements from the nadir geometry. The field is shown to be sufficiently mature that global measurements of atmospheric pollution from space may be undertaken.

Publié le :
DOI : 10.1016/j.crhy.2005.07.010
Keywords: Ultraviolet spectroscopy, Visible spectroscopy, Atmospheric remote sensing, Stratospheric composition, Tropospheric composition, Radiative transfer modeling, Chemistry and transport modeling
Mot clés : Spectroscopie ultraviolet, Spectroscopie visible, Télédétection atmosphérique, Composition de la stratosphère, Composition de la troposphère, Transfert radiatif, Modélisation du transport et de la chimie
Kelly Chance 1

1 Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, 60 Garden Street, Cambridge MA 02138, USA
@article{CRPHYS_2005__6_8_836_0,
     author = {Kelly Chance},
     title = {Ultraviolet and visible spectroscopy and spaceborne remote sensing of the {Earth's} atmosphere},
     journal = {Comptes Rendus. Physique},
     pages = {836--847},
     publisher = {Elsevier},
     volume = {6},
     number = {8},
     year = {2005},
     doi = {10.1016/j.crhy.2005.07.010},
     language = {en},
}
TY  - JOUR
AU  - Kelly Chance
TI  - Ultraviolet and visible spectroscopy and spaceborne remote sensing of the Earth's atmosphere
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 836
EP  - 847
VL  - 6
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2005.07.010
LA  - en
ID  - CRPHYS_2005__6_8_836_0
ER  - 
%0 Journal Article
%A Kelly Chance
%T Ultraviolet and visible spectroscopy and spaceborne remote sensing of the Earth's atmosphere
%J Comptes Rendus. Physique
%D 2005
%P 836-847
%V 6
%N 8
%I Elsevier
%R 10.1016/j.crhy.2005.07.010
%G en
%F CRPHYS_2005__6_8_836_0
Kelly Chance. Ultraviolet and visible spectroscopy and spaceborne remote sensing of the Earth's atmosphere. Comptes Rendus. Physique, Volume 6 (2005) no. 8, pp. 836-847. doi : 10.1016/j.crhy.2005.07.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.07.010/

[1] A. Cornu Sur la limite ultra-violette du spectre solaire, C. R. Acad. Sci. Paris, Volume 8 (1879), pp. 1101-1108

[2] A. Cornu Sur l'absorption par l'atmosphère des radiations ultra-violettes, C. R. Acad. Sci. Paris, Volume 88 (1879), pp. 1285-1290

[3] A. Cornu Sur la limite ultra-violette du spectre solaire, d'après des clichés obtenus par M. le Dr O. Simony au sommet du pic de Ténériffe, C. R. Acad. Sci. Paris, Volume 111 (1890), pp. 941-947

[4] W.N. Hartley On the absorption of solar rays by atmospheric ozone, J. Chem. Soc., Volume 39 (1881), pp. 111-128

[5] S.P. Langley; C.G. Abbot Annals of the Astrophysical Observatory of the Smithsonian Institution, 1 (1900), pp. 69-75

[6] U. Platt Differential optical absorption spectroscopy (DOAS) (M.W. Sigrist, ed.), Air Monitoring by Spectroscopic Techniques, Chem. Anal. Ser., vol. 127, John Wiley, New York, 1994, pp. 27-84

[7] C. Fabry; H. Buisson L'absorption de l'ultraviolet par l'ozone et la limite du spectre solaire, J. Phys. Paris, Volume 3 (1913), pp. 196-206

[8] G.M.B. Dobson Forty years' research on atmospheric ozone at Oxford: A history, Appl. Opt., Volume 7 (1968), pp. 387-405

[9] J.F. Noxon Stratospheric NO2 in the Antarctic winter, Geophys. Res. Lett., Volume 5 (1978), pp. 1021-1022

[10] J.F. Noxon Stratospheric NO2, 2, Global behavior, J. Geophys. Res., Volume 84 (1979), pp. 5067-5076

[11] R.L. Kurucz; I. Furenlid; J. Brault; L. Testerman Solar Flux Atlas from 296 to 1300 nm, National Solar Observatory, Sunspot, New Mexico, 1984 (240 pp)

[12] T.N. Woods; D.K. Prinz; G.J. Rottman; J. London; P.C. Crane; R.P. Cebula; E. Hilsenrath; G.E. Brueckner; M.D. Andrews; O.R. White; M.E. VanHoosier; L.E. Floyd; L.C. Herring; B.G. Knapp; C.K. Pankratz; P.A. Reiser Validation of the UARS solar ultraviolet irradiances: Comparison with the ATLAS 1 and 2 measurements, J. Geophys. Res., Volume 101 (1996), pp. 9541-9570

[13] A. Berk; G.P. Anderson; L.S. Bernstein; P.K. Acharya; H. Dothe; M.W. Matthew; S.M. Adler-Golden; J.H. Chetwynd; S.C. Richtsmeier; B. Pukall; C.L. Allred; L.S. Jeong; M.L. Hoke MODTRAN4 radiative transfer modeling for atmospheric correction, Proc. SPIE, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, Volume 3756 (1999), pp. 348-353

[14] GOME Users Manual, ESA Special Publication SP-1182, ESTEC, Noordwijk, 1995

[15] K. Chance Analysis of BrO measurements from the Global Ozone Monitoring Experiment, Geophys. Res. Lett., Volume 25 (1988), pp. 3335-3338

[16] P.I. Palmer; D.J. Jacob; K. Chance; R.V. Martin; R.J.D. Spurr; T.P. Kurosu; I. Bey; R. Yantosca; A. Fiore; Q. Li Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment, J. Geophys. Res., Volume 106 (2001), pp. 14539-14550

[17] R. Spurr, M. van Roozendael, J. Lambert, C. Fayt, The GODFIT direct fitting algorithm: A new approach for total column retrieval, in: Proc. 2004 ENVISAT & ERS Symposium, ESA publication SP-572, 2004

[18] S.F. Singer; R.C. Wentworth A method for the determination of the vertical ozone distribution from a satellite, J. Geophys. Res., Volume 62 (1957), pp. 299-308

[19] D.F. Heath; C.L. Mateer; A.J. Krueger The Nimbus-4 backscatter ultraviolet (BUV) atmospheric ozone experiment—two years' operation, Pure Appl. Geophys., Volume 106–108 (1973), pp. 1238-1253

[20] K.V. Chance; J.P. Burrows; W. Schneider Retrieval and molecule sensitivity studies for the Global Ozone Monitoring Experiment and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY, Proc. S.P.I.E., Remote Sensing of Atmospheric Chemistry, Volume 1491 (1991), pp. 151-165

[21] L.E. Mauldin; N.H. Zaun; M.P. McCormick; J.H. Guy; W.R. Vaughn Stratospheric aerosol and gas experiment II instrument: A functional description, Opt. Eng., Volume 24 (1985), pp. 307-312

[22] S. Noël; J.P. Burrows; H. Bovensmann; J. Frerick; K.V. Chance; A.P.H. Goede; C. Muller Atmospheric trace gas sounding with SCIAMACHY, Adv. Space Res., Volume 26 (2000), pp. 1949-1954

[23] R.D. McPeters; S.J. Janz; E. Hilsenrath; T.L. Brown The retrieval of O3 profiles from limb scatter measurements: Results from the Shuttle Ozone Limb Sounding Experiment, Geophys. Res. Lett., Volume 27 (2000), pp. 2597-2600

[24] C.E. Sioris; C.S. Haley; C.A. McLinden; C. von Savigny; I.C. McDade; W.F.J. Evans; J.C. McConnell; N.D. Lloyd; E.J. Llewellyn; D. Murtagh; U. Frisk; T.P. Kurosu; K.V. Chance; K. Pfeilsticker; H. Bösch; F. Weidner Stratospheric profiles of nitrogen dioxide observed by optical spectrograph and infrared imager system on the Odin satellite, J. Geophys. Res., Volume 108 (2003), p. 4215 | DOI

[25] C. Caspar, K. Chance, GOME wavelength calibration using solar and atmospheric spectra, in: T.-D. Guyenne, D. Danesy (Eds.), Proc. Third ERS Symposium on Space at the Service of our Environment, European Space Agency Special Publication SP-414, 1997

[26] J. Joiner; P.K. Bhartia; R.P. Cebula; E. Hilsenrath; R.D. McPeters; H. Park Rotational Raman scattering (ring effect) in satellite backscatter ultraviolet measurements, Appl. Opt., Volume 34 (1995), pp. 4513-4525

[27] K. Chance; R.J.D. Spurr Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum, Appl. Opt., Volume 36 (1997), pp. 5224-5230

[28] M. Vountas; V.V. Rozanov; J.P. Burrows Ring effect: Impact of rotational Raman scattering on radiative transfer in Earth's Atmosphere, J. Quant. Spectrosc. Radiat. Transfer, Volume 60 (1998), pp. 943-961

[29] K. Chance; T.P. Kurosu; C.E. Sioris Undersampling correction for array detector-based satellite spectrometers, Appl. Opt., Volume 44 (2005), pp. 1296-1304

[30] L.A. Hall; G.P. Anderson High-resolution solar spectrum between 200 and 3100 Å, J. Geophys. Res., Volume 96 (1991), pp. 12927-12931

[31] D.R. Bates Rayleigh scattering by air, Planet. Space Sci., Volume 32 (1984), pp. 785-790

[32] B.A. Bodhaine; N.B. Wood; E.G. Dutton; J.R. Slusser On Rayleigh optical depth calculations, J. Atmos. Ocean. Tech., Volume 16 (1999), pp. 1854-1861

[33] J.F. Grainger; J. Ring Anomalous Fraunhofer line profiles, Nature, Volume 193 (1962), p. 762

[34] A.P. Vasilkov; J. Joiner; J. Gleason; P.K. Bhartia Ocean Raman scattering in satellite backscatter UV measurements, Geophys. Res. Lett., Volume 29 (2002), p. 1837 | DOI

[35] L.S. Rothman; A. Barbe; D.C. Benner; L.R. Brown; C. Camy-Peyret; M.R. Carleer; K. Chance; C. Clerbaux; V. Dana; V.M. Devi; A. Fayt; J.-M. Flaud; R.R. Gamache; A. Goldman; D. Jacquemart; K.W. Jucks; W.J. Lafferty; J.-Y. Mandin; S.T. Massie; V. Nemtchinov; D.A. Newnham; A. Perrin; C.P. Rinsland; J. Schroeder; K.M. Smith; M.A.H. Smith; K. Tang; R.A. Toth; J. Vander Auwera; P. Varanasi; K. Yoshino The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001, J. Quant. Spectrosc. Radiat. Transfer, Volume 82 (2003), pp. 5-44

[36] J. Orphal; K. Chance Ultraviolet and visible absorption cross sections for HITRAN, J. Quant. Spectrosc. Radiat. Transfer, Volume 82 (2003), pp. 491-504

[37] S. Goldman Information Theory, Prentice-Hall, New York, 1953

[38] S. Slijkhuis, A. von Bargen, W. Thomas, K. Chance, Calculation of undersampling correction spectra for DOAS spectral fitting, in: Proc. ESAMS'99—European Symposium on Atmospheric Measurements from Space, 1999, pp. 563–569

[39] R.J.D. Spurr; T.P. Kurosu; K. Chance A linearized discrete ordinate radiative transfer model for atmospheric remote sensing retrieval, J. Quant. Spectrosc. Radiat. Transfer, Volume 68 (2001), pp. 689-735

[40] R.J.D. Spurr, LIDORT V2PLUS: A comprehensive radiative transfer package for UV/VIS/NIR nadir remote sensing; A general quasi analytic solution, in: Proc. S.P.I.E., vol. 5235, Remote Sensing of Clouds and the Atmosphere VIII, 2003

[41] R.F. Van Oss; R.J.D. Spurr Fast and accurate 4-stream linearized discrete ordinate radiative transfer models for ozone profile retrieval, J. Quant. Spectrosc. Radiat. Transfer, Volume 75 (2002), pp. 177-220

[42] V.V. Rozanov; D. Diebel; R.J.D. Spurr; J.P. Burrows GOMETRAN: A radiative transfer model for the satellite project GOME—the plane-parallel version, J. Geophys. Res., Volume 102 (1997), pp. 16683-16695

[43] V.V. Rozanov; M. Buchwitz; K.-U. Eichmann; R. de Beek; J.P. Burrows SCIATRAN—a new radiative transfer model for geophysical applications in the 240–2400 nm spectral region: The pseudo-spherical version, Adv. Space Res., Volume 29 (2002), pp. 1831-1835

[44] C.A. McLinden; J.C. McConnell; E. Griffioen; C.T. McElroy A vector radiative transfer model for the Odin/OSIRIS project, Can. J. Phys., Volume 80 (2002), pp. 375-393

[45] J.F. De Haan; P.B. Bosma; J.W. Hovenier The adding method for multiple scattering calculations of polarized light, Astron. Astrophys., Volume 183 (1987), pp. 371-391

[46] P. Stammes Spectral radiance modelling in the UV-visible range (W.L. Smith; Y.M. Timofeyev, eds.), IRS 2000: Current Problems in Atmospheric Radiation, A. Deepak, Hampton, VA, 2001, pp. 385-388

[47] I. Bey; D.J. Jacob; R.M. Yantosca; J.A. Logan; B.D. Field; A.M. Fiore; Q. Li; H.Y. Liu; L.J. Mickley; M.G. Schultz Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., Volume 106 (2001), pp. 23073-23096

[48] G.P. Brasseur; D.A. Hauglustaine; S. Walters; P.J. Rasch; J.-F. Muller; C. Granier; X.X. Tie MOZART: A global chemical transport model for ozone and related chemical tracers, part 1. Model description, J. Geophys. Res., Volume 103 (1998), pp. 28265-28289

[49] D.A. Hauglustaine; G.P. Brasseur; S. Walters; P.J. Rasch; J.-F. Muller; L.K. Emmons; M.A. Carroll MOZART: A global chemical transport model for ozone and related chemical tracers, part 2. Model results and evaluation, J. Geophys. Res., Volume 103 (1998), pp. 28291-28335

[50] R.D. McPeters, A.J. Krueger, P.K. Bhartia, J.R. Herman, Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide, NASA Reference Publication 1998-206895, National Aeronautics and Space Administration, Washington, DC, 1998

[51] A.J. Fleig, R.D. McPeters, P.K. Bhartia, B.M. Schlesinger, R.P. Cebula, K.F. Klenk, S.L. Taylor, D.F. Heath, Nimbus-7 Solar Backscatter Ultraviolet (SBUV) Ozone Products User's Guide, NASA Reference Publication, 1234, National Aeronautics and Space Administration, Washington, DC, 1990

[52] D.W. Rusch; G.H. Mount; C.A. Barth; R.J. Thomas; M.T. Callan Solar Mesosphere Explorer Ultraviolet Spectrometer: Measurements of ozone in the 1.0–0.1 mbar region, J. Geophys. Res., Volume 89 (1984), pp. 11677-11687

[53] R.V. Martin; D.J. Jacob; K. Chance; T. Kurosu; P.I. Palmer; M.J. Evans Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns, J. Geophys. Res., Volume 108 (2003), p. 4537 | DOI

[54] L. Jaeglé; R.V. Martin; K. Chance; L. Steinberger; T.P. Kurosu; D.J. Jacob; A.I. Modi; V. Yoboué; L. Sigha-Nkamdjou; C. Galy-Lacaux Satellite mapping of rain-induced nitric oxide emissions from soils, J. Geophys. Res., Volume 109 (2004), p. D21310 | DOI

[55] K. Kreher; P.V. Johnston; S.W. Wood; B. Nardi; U. Platt Ground-based measurements of tropospheric and stratospheric BrO at Arrival Heights, Antarctica, Geophys. Res. Lett., Volume 24 (1997), pp. 3021-3024

[56] P.I. Palmer; D.J. Jacob; A.M. Fiore; R.V. Martin; K. Chance; T. Kurosu Mapping isoprene emissions over North America using formaldehyde column observations from space, J. Geophys. Res., Volume 108 (2003), p. 4180 | DOI

[57] R. Munro; R. Siddans; W.J. Reburn; B.J. Kerridge Direct measurement of tropospheric ozone distributions from space, Nature, Volume 392 (1998), pp. 168-171

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A review of remote sensing techniques and related spectroscopy problems

Sébastien Payan; Jérôme de La Noë; Alain Hauchecorne; ...

C. R. Phys (2005)


Spatial observation of the ozone layer

Sophie Godin-Beekmann

C. R. Géos (2010)


History and future of the molecular spectroscopic databases

Laurence S. Rothman; Nicole Jacquinet-Husson; Christian Boulet; ...

C. R. Phys (2005)