Comptes Rendus
Spin Transfer Torque: a new method to excite or reverse a magnetization
[Le transfert de spin : un nouveau moyen pour exciter ou renverser une aimantation]
Comptes Rendus. Physique, Spintronics, Volume 6 (2005) no. 9, pp. 956-965.

La découverte récente qu'un courant polarisé en spin peut exercer, via un transfert de moment angulaire de spin, un fort couple sur un ferromagnétique offre un nouveau moyen pour manipuler une aimantation sans appliquer de champ externe. Ce couple dit de transfert de spin peut, pour un courant suffisament fort, générer des excitations magnétiques en hyperfréquence ou même provoquer le renversement de l'aimantation. Bien que la nature des modes magnétiques induits par le courant ne soit pas encore bien résolue, le transfert de spin représente d'ores et déjà une rupture en spintronique et fait l'objet de nombreuses recherches pour les applications dans les mémoires magnétiques non volatiles, la logique magnétique ultra-rapide, l'enregistrement haute densité ou encore dans les dispositifs hyperfréquences pour les télécommunications.

The recent discovery that a spin polarized current can exert a large torque on a ferromagnet through a transfer of spin angular momentum, offers a new method to manipulate a magnetization without applying any external field. This additional spin transfer torque can generate oscillatory magnetic modes or even magnetization reversal, for a sufficiently large current. Although the nature of the magnetization dynamics induced by this new effect is not yet completely resolved, spin transfer is already a turning point in spintronics and is today the subject of an extensive research for applications in magnetic random access memory, fast programmable logic, high-density recording and in high frequency devices for telecommunications.

Publié le :
DOI : 10.1016/j.crhy.2005.10.002
Keywords: Spintronics, Spin transfer, Microwave dynamics
Mots-clés : Spintronique, Transfert de spin, Dynamique hyperfréquence

Vincent Cros 1 ; Olivier Boulle 1 ; J. Grollier 1 ; Amir Hamzić 1 ; M. Muñoz 1 ; Luis Gustavo Pereira 1 ; Frédéric Petroff 1

1 Unité mixte de physique CNRS/Thales, route départementale 128, 91767 Palaiseau cedex, France et Université Paris-Sud XI, 91405 Orsay cedex, France
@article{CRPHYS_2005__6_9_956_0,
     author = {Vincent Cros and Olivier Boulle and J. Grollier and Amir Hamzi\'c and M. Mu\~noz and Luis Gustavo Pereira and Fr\'ed\'eric Petroff},
     title = {Spin {Transfer} {Torque:} a new method to excite or reverse a magnetization},
     journal = {Comptes Rendus. Physique},
     pages = {956--965},
     publisher = {Elsevier},
     volume = {6},
     number = {9},
     year = {2005},
     doi = {10.1016/j.crhy.2005.10.002},
     language = {en},
}
TY  - JOUR
AU  - Vincent Cros
AU  - Olivier Boulle
AU  - J. Grollier
AU  - Amir Hamzić
AU  - M. Muñoz
AU  - Luis Gustavo Pereira
AU  - Frédéric Petroff
TI  - Spin Transfer Torque: a new method to excite or reverse a magnetization
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 956
EP  - 965
VL  - 6
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crhy.2005.10.002
LA  - en
ID  - CRPHYS_2005__6_9_956_0
ER  - 
%0 Journal Article
%A Vincent Cros
%A Olivier Boulle
%A J. Grollier
%A Amir Hamzić
%A M. Muñoz
%A Luis Gustavo Pereira
%A Frédéric Petroff
%T Spin Transfer Torque: a new method to excite or reverse a magnetization
%J Comptes Rendus. Physique
%D 2005
%P 956-965
%V 6
%N 9
%I Elsevier
%R 10.1016/j.crhy.2005.10.002
%G en
%F CRPHYS_2005__6_9_956_0
Vincent Cros; Olivier Boulle; J. Grollier; Amir Hamzić; M. Muñoz; Luis Gustavo Pereira; Frédéric Petroff. Spin Transfer Torque: a new method to excite or reverse a magnetization. Comptes Rendus. Physique, Spintronics, Volume 6 (2005) no. 9, pp. 956-965. doi : 10.1016/j.crhy.2005.10.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.10.002/

[1] I. Campbel; A. Fert Ferromagnetic materials (E.P. Wolfarth, ed.), North-Holland, Amsterdam, 1982

[2] J. Slonczewski J. Magn. Magn. Mat., 159 (1996), p. 1

[3] L. Berger Phys. Rev. B, 54 (1996), p. 9353

[4] M. Tsoi; A.G.M. Jansen; J. Bass; W.C. Chiang; M. Seck; V. Tsoi; P. Wyder; E.B. Myers; D.C. Ralph; J.A. Katine; R.N. Louie; R.A. Buhrman Science, 80 (1998), p. 4281

[5] J.E. Wegrowe; D. Kelly; Ph. Guitienne; Y. Jaccard; J.-Ph. Ansermet Europhys. Lett., 45 (1999), p. 626

[6] J.A. Katine; F.J. Albert; R.A. Buhrman; E.B. Myers; D.C. Ralph Phys. Rev. Lett., 84 (2000), p. 3149

[7] A. Fert; V. Cros; J.M. George; J. Grollier; H. Jaffres; A. Hamzic; A. Vaurès; G. Faini; J. Ben Youssef; H. Le Gall J. Magn. Magn. Mater., 272 (2004), p. 1706

[8] S. Zhang; P.M. Levy; A. Fert Phys. Rev. Lett., 88 (2002), p. 236601

[9] J. Xiao; A. Zangwill; M.D. Stiles Phys. Rev. B, 72 (2005), p. 01446

[10] X. Waintal; E.B. Myers; P.W. Brouwer; D.C. Ralph Phys. Rev. B, 62 (2000), p. 12317

[11] T. Valet; A. Fert Phys. Rev. B, 48 (1993), p. 7099

[12] A. Shpiro, P.M. Levy, S. Zhang (2003)

[13] J. Barnas; A. Fert; M. Gmitra; I. Weymann; V. Dugaev Phys. Rev. B, 72 (2005), p. 024426

[14] M.D. Stiles; J. Xiao; A. Zangwill Phys. Rev. B, 69 (2004), p. 054408

[15] K. Xia; P.J. Kelly; G.E.W. Bauer; A. Brataas; I. Turek; M. Zwierzycki; Y. Tserkovnyak; P.J. Kelly; A. Brataas; G.E.W. Bauer; J. Manschot; A. Brataas; G.E.W. Bauer Appl. Phys. Lett., 65 (2002), p. 220401

[16] M. AlHajDarwish; H. Kurt; S. Urazdhin; A. Fert; R. Loloee; W.P. Pratt; J. Bass Phys. Rev. Lett., 93 (2004), p. 157203

[17] M.D. Stiles; A. Zangwill Phys. Rev. B, 66 (2002), p. 014407

[18] M.D. Stiles; A. Zangwill J. Appl. Phys., 91 (2002), p. 6812

[19] J. Zhang; P.M. Levy; S. Zhang; V. Antropov Phys. Rev. Lett., 93 (2004), p. 256602

[20] K. Lee; A. Deac; O. Redon; J.P. Nozieres; B. Dieny Nat. Mater., 3 (2004), p. 877

[21] B. Montigny; J. Miltat J. Appl. Phys., 97 (2005), p. 10C708

[22] J. Grollier; V. Cros; A. Hamzić; J.M. George; H. Jaffrès; A. Fert; G. Faini; J. Ben Youssef; H. Le Gall Phys. Rev. B, 67 (2003), p. 174402

[23] D. Lacour; J.A. Katine; N. Smith; M.J. Carey; J.R. Childress Appl. Phys. Lett., 85 (2004), p. 4681

[24] J.Z. Sun Phys. Rev. B, 62 (2000), p. 570

[25] F.J. Albert; J.A. Katine; R.A. Buhrman; D.C. Ralph Appl. Phys. Lett., 77 (2000), p. 3809

[26] J. Grollier; V. Cros; A. Hamzić; J.M. George; H. Jaffrès; A. Fert; G. Faini; J. Ben Youssef; H. Le Gall Appl. Phys. Lett., 78 (2001), p. 3663

[27] T. Devolder; P. Crozat; C. Chappert; J. Miltat; A. Tulapurkar; Y. Suzuki; K. Yagami Phys. Rev. B, 71 (2005), p. 184401

[28] E.B. Myers; D.C. Ralph; J.A. Katine; R.N. Louie; R.A. Buhrman Science, 285 (2002), p. 867

[29] R.H. Koch; J.A. Katine; J.Z. Sun Phys. Rev. Lett., 92 (2004), p. 088302

[30] Z. Li; S. Zhang Phys. Rev. B, 69 (2004), p. 134416

[31] S. Urazhdin; H. Kurt; M. AlHajDarwish; N.O. Birge; W.P. Pratt; J. Bass J. Appl. Phys., 97 (2005), p. 10C701

[32] J.E. Wegrowe Phys. Rev. B, 68 (2004), p. 214414

[33] S.I. Kiselev; J.C. Sankey; I.N. Krivorotov; N.C. Emley; R.J. Schoelkopf; R.A. Buhrman; D.C. Ralph Nature, 425 (2003), p. 380

[34] W.H. Rippard; M.R. Pufall; S. Kaka; S.E. Russek; T.J. Silva Phys. Rev. Lett., 92 (2004), p. 027201

[35] S. Urazhdin; W.P. Pratt J. Magn. Magn. Mat., 282 (2004), p. 264

[36] S. Urazhdin; N.O. Birge; W.P. Pratt; J. Bass Cond. Mat., 0309191 (2003)

[37] Y. Jiang; S. Abe; T. Ochiai; T. Nozaki; A. Hirohata; N. Tezuka; K. Inomata Phys. Rev. Lett., 92 (2004), p. 167204

[38] K. Yagami; A.A. Tulapurkar; A. Fukushima; Y. Suzuki Appl. Phys. Lett., 85 (2001), p. 5634

[39] D. Chiba; Y. Sato; T. Kita; F. Matsukura; H. Ohno Phys. Rev. Lett., 93 (2004), p. 216602

[40] M. Elsen, et al., Private communications, 2005

[41] Y. Higo; K. Yamane; K. Ohba; H. Narisawa; K. Bessho; M. Hosomi; H. Kano Appl. Phys. Lett., 87 (2005), p. 082502

[42] E.B. Myers; F.J. Albert; J.C. Sankey; E. Bonet; R.A. Buhrman; D.C. Ralph Phys. Rev. Lett., 89 (2002), p. 196801

[43] W.H. Rippard; M.R. Pufall; S. Kaka; T.J. Silva; S.E. Russek Phys. Rev. B, 70 (2004), p. 100406(R)

[44] S.I. Kiselev; J.C. Sankey; I.N. Krivorotov; N.C. Emley; A.G.F. Garcia; R.A. Buhrman; D.C. Ralph Phys. Rev. B, 72 (2005), p. 064430

[45] M. Covington; M. AlHajDarwish; Y. Ding; N.J. Gokemeijer; M.A. Seigler Phys. Rev. B, 69 (2004), p. 184406

[46] M.R. Pufall; W.H. Rippard; S. Kaka; S.E. Russek; T.J. Silva; J.A. Katine; M. Carrey Phys. Rev. B, 69 (2004), p. 214409

[47] I.N. Krivorotov; N.C. Emley; J.C. Sankey; S.I. Kiselev; D.C. Ralph; R.A. Buhrman Science, 307 (2005), p. 228

[48] L. Berger; L. Berger J. Appl. Phys., 55 (1984), p. 1954

[49] P.P. Freitas; L. Berger J. Appl. Lett., 57 (1985), p. 1266

[50] G. Tatara; H. Kohno Phys. Rev. Lett., 92 (2004), p. 086601

[51] X. Waintal; M. Viret Europhys. Lett., 65 (2004), p. 427

[52] Z. Li; S. Zhang; S. Zhang; Z. Li Phys. Rev. Lett., 92 (2004), p. 207203

[53] A. Thiaville; Y. Nakatani; J. Miltat; Y. Susuki Europhys. Lett., 69 (2005), p. 990

[54] J. Grollier; P. Boulenc; V. Cros; A. Hamzić; A. Vaurès; A. Fert; G. Faini; J. Grollier; D. Lacour; V. Cros; A. Hamzić; A. Vaurès; A. Fert; D. Adam; G. Faini J. Appl. Phys., 83 (2003), p. 509

[55] M. Kläui; C.A.F. Vaz; J.A.C. Bland; W. Wernsdorfer; G. Faini; E. Cambril; L.J. Heyderman; M. Kläui; P.O. Jubert; R. Allenspach; A. Bishof; J.A.C. Bland; G. Faini; U. Rüdiger; C.A.F. Vaz; L. Vila; C. Vouille Phys. Rev. Lett., 83 (2003), p. 105

[56] N. Vernier; D.A. Allwood; D. Atkinson; M.D. Cooke; R.P. Cowburn Europhys. Lett., 65 (2004), p. 526

[57] A. Yamaguchi; T. Ono; S. Nasu; K. Miyake; K. Mibu; T. Shinjo Phys. Rev. Lett., 92 (2004), p. 077205

[58] D. Ravelosona; D. Lacour; J.A. Katine; B.D. Terris; C. Chappert Phys. Rev. Lett., 95 (2004), p. 117203

[59] C.K. Lim; T. Devolder; C. Chappert; J. Grollier; V. Cros; A. Vaurès; A. Fert; G. Faini Appl. Phys. Lett., 84 (2004), p. 2820

[60] D.A. Allwood; G. Xiong; M.D. Cooke; C.C. Faulkner; D. Atkinson; N. Vernier; R.P. Cowburn Science, 296 (2002), p. 5575

[61] D.A. Allwood; G. Xiong; C.C. Faulkner; D. Atkinson; D. Petit; R.P. Cowburn Science, 309 (2005), p. 1688

[62] T. Devolder; C. Chappert; P. Crozat; A. Tulapurkar; Y. Suzuki; J. Miltat; K. Yagami Appl. Phys. Lett., 86 (2005), p. 062505

[63] K.J. Lee; et al.; A. Deac et al. J. Magn. Magn. Mater., 95 (2004), p. 7423

[64] N.C. Emley; F.J. Albert; E.M. Ryan; I.N. Krivorotov; D.C. Ralph; R.A. Buhrman; J.M. Daughton; A. Jander Appl. Phys. Lett., 84 (2004), p. 4257

[65] Y. Huai; F. Albert; P. Nguyen; M. Pakala; T. Valet Appl. Phys. Lett., 84 (2004), p. 3118

[66] G.D. Fuchs; N.C. Emley; I.N. Krivorotov; P.M. Braganca; E.M. Ryan; S.I. Kiselev; J.C. Sankey; D.C. Ralph; R.A. Buhrman; J.A. Katine Appl. Phys. Lett., 85 (2004), p. 1205

[67] M. Covington; M. AlHajDarwish; Y. Ding; N.J. Gokemeijer; M.A. Seigler Phys. Rev. B, 69 (2004), p. 184406

[68] W.H. Rippard; M.R. Pufall; S. Kaka; T.J. Silva; S.E. Russek Phys. Rev. Lett., 95 (2005), p. 067203

[69] S. Kaka; M.R. Pufall; W.H. Rippard; T.J. Silva; S.E. Russek; J.A. Katine Nature, 437 (2005), p. 389

[70] F.B. Mancoff; N.D. Rizzo; B.N. Engel; S. Tehrani Nature, 437 (2005), p. 393

  • Zhisheng Li; Mingming Yang; Mingming Fan; Xiaoyan Zeng; Ming Yan Manipulation of Magnonic Activity by Electric Currents in Ferromagnetic Nanocylinders, SPIN, Volume 14 (2024) no. 04 | DOI:10.1142/s2010324724500139
  • D. Aravinthan; P. Sabareesan Magnetization switching by orange peel coupling in pentalayer nanopillar with dual polarizer, The European Physical Journal Plus, Volume 137 (2022) no. 9 | DOI:10.1140/epjp/s13360-022-03187-4
  • Haydar Kanso; Renaud Patte; Helena Zapolsky; Denis Ledue Influence of grain boundaries, interface roughness and non-collinear magnetic configurations in the AF layer on the exchange bias properties of F/AF nanodots: A numerical investigation, Journal of Magnetism and Magnetic Materials, Volume 513 (2020), p. 167250 | DOI:10.1016/j.jmmm.2020.167250
  • Alessandro Chiolerio; Paolo Allia Magnetic Nanostructures and Spintronics, Encyclopedia of Nanotechnology (2016), p. 1850 | DOI:10.1007/978-94-017-9780-1_238
  • J M De Teresa; A Fernández-Pacheco; R Córdoba; L Serrano-Ramón; S Sangiao; M R Ibarra Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID), Journal of Physics D: Applied Physics, Volume 49 (2016) no. 24, p. 243003 | DOI:10.1088/0022-3727/49/24/243003
  • JAYITA DAS; SYED M. ALAM; SANJUKTA BHANJA RECENT TRENDS IN SPINTRONICS-BASED NANOMAGNETIC LOGIC, SPIN, Volume 04 (2014) no. 03, p. 1450004 | DOI:10.1142/s2010324714500040
  • Naganivetha Thiyagarajah; Kyoung-il Lee; Seongtae Bae Spin transfer switching characteristics in a [Pd/Co]m/Cu/[Co/Pd]n pseudo spin-valve nanopillar with perpendicular anisotropy, Journal of Applied Physics, Volume 111 (2012) no. 7 | DOI:10.1063/1.3675150
  • S. Le Gall; J. Cucchiara; M. Gottwald; C. Berthelot; C.-H. Lambert; Y. Henry; D. Bedau; D. B. Gopman; H. Liu; A. D. Kent; J. Z. Sun; W. Lin; D. Ravelosona; J. A. Katine; Eric E. Fullerton; S. Mangin State diagram of nanopillar spin valves with perpendicular magnetic anisotropy, Physical Review B, Volume 86 (2012) no. 1 | DOI:10.1103/physrevb.86.014419
  • B. Borca; O. Fruchart; Ph. David; A. Rousseau; C. Meyer Kinetic self-organization of trenched templates for the fabrication of versatile ferromagnetic nanowires, Applied Physics Letters, Volume 90 (2007) no. 14 | DOI:10.1063/1.2718510
  • Luc Piraux; Krystel Renard; Raphael Guillemet; Stefan Mátéfi-Tempfli; Mária Mátéfi-Tempfli; Vlad Andrei Antohe; Stéphane Fusil; Karim Bouzehouane; Vincent Cros Template-Grown NiFe/Cu/NiFe Nanowires for Spin Transfer Devices, Nano Letters, Volume 7 (2007) no. 9, p. 2563 | DOI:10.1021/nl070263s

Cité par 10 documents. Sources : Crossref

Commentaires - Politique