[Le transfert de spin : un nouveau moyen pour exciter ou renverser une aimantation]
La découverte récente qu'un courant polarisé en spin peut exercer, via un transfert de moment angulaire de spin, un fort couple sur un ferromagnétique offre un nouveau moyen pour manipuler une aimantation sans appliquer de champ externe. Ce couple dit de transfert de spin peut, pour un courant suffisament fort, générer des excitations magnétiques en hyperfréquence ou même provoquer le renversement de l'aimantation. Bien que la nature des modes magnétiques induits par le courant ne soit pas encore bien résolue, le transfert de spin représente d'ores et déjà une rupture en spintronique et fait l'objet de nombreuses recherches pour les applications dans les mémoires magnétiques non volatiles, la logique magnétique ultra-rapide, l'enregistrement haute densité ou encore dans les dispositifs hyperfréquences pour les télécommunications.
The recent discovery that a spin polarized current can exert a large torque on a ferromagnet through a transfer of spin angular momentum, offers a new method to manipulate a magnetization without applying any external field. This additional spin transfer torque can generate oscillatory magnetic modes or even magnetization reversal, for a sufficiently large current. Although the nature of the magnetization dynamics induced by this new effect is not yet completely resolved, spin transfer is already a turning point in spintronics and is today the subject of an extensive research for applications in magnetic random access memory, fast programmable logic, high-density recording and in high frequency devices for telecommunications.
Mots-clés : Spintronique, Transfert de spin, Dynamique hyperfréquence
Vincent Cros 1 ; Olivier Boulle 1 ; J. Grollier 1 ; Amir Hamzić 1 ; M. Muñoz 1 ; Luis Gustavo Pereira 1 ; Frédéric Petroff 1
@article{CRPHYS_2005__6_9_956_0, author = {Vincent Cros and Olivier Boulle and J. Grollier and Amir Hamzi\'c and M. Mu\~noz and Luis Gustavo Pereira and Fr\'ed\'eric Petroff}, title = {Spin {Transfer} {Torque:} a new method to excite or reverse a magnetization}, journal = {Comptes Rendus. Physique}, pages = {956--965}, publisher = {Elsevier}, volume = {6}, number = {9}, year = {2005}, doi = {10.1016/j.crhy.2005.10.002}, language = {en}, }
TY - JOUR AU - Vincent Cros AU - Olivier Boulle AU - J. Grollier AU - Amir Hamzić AU - M. Muñoz AU - Luis Gustavo Pereira AU - Frédéric Petroff TI - Spin Transfer Torque: a new method to excite or reverse a magnetization JO - Comptes Rendus. Physique PY - 2005 SP - 956 EP - 965 VL - 6 IS - 9 PB - Elsevier DO - 10.1016/j.crhy.2005.10.002 LA - en ID - CRPHYS_2005__6_9_956_0 ER -
%0 Journal Article %A Vincent Cros %A Olivier Boulle %A J. Grollier %A Amir Hamzić %A M. Muñoz %A Luis Gustavo Pereira %A Frédéric Petroff %T Spin Transfer Torque: a new method to excite or reverse a magnetization %J Comptes Rendus. Physique %D 2005 %P 956-965 %V 6 %N 9 %I Elsevier %R 10.1016/j.crhy.2005.10.002 %G en %F CRPHYS_2005__6_9_956_0
Vincent Cros; Olivier Boulle; J. Grollier; Amir Hamzić; M. Muñoz; Luis Gustavo Pereira; Frédéric Petroff. Spin Transfer Torque: a new method to excite or reverse a magnetization. Comptes Rendus. Physique, Spintronics, Volume 6 (2005) no. 9, pp. 956-965. doi : 10.1016/j.crhy.2005.10.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.10.002/
[1] Ferromagnetic materials (E.P. Wolfarth, ed.), North-Holland, Amsterdam, 1982
[2] J. Magn. Magn. Mat., 159 (1996), p. 1
[3] Phys. Rev. B, 54 (1996), p. 9353
[4] Science, 80 (1998), p. 4281
[5] Europhys. Lett., 45 (1999), p. 626
[6] Phys. Rev. Lett., 84 (2000), p. 3149
[7] J. Magn. Magn. Mater., 272 (2004), p. 1706
[8] Phys. Rev. Lett., 88 (2002), p. 236601
[9] Phys. Rev. B, 72 (2005), p. 01446
[10] Phys. Rev. B, 62 (2000), p. 12317
[11] Phys. Rev. B, 48 (1993), p. 7099
[12] A. Shpiro, P.M. Levy, S. Zhang (2003)
[13] Phys. Rev. B, 72 (2005), p. 024426
[14] Phys. Rev. B, 69 (2004), p. 054408
[15] Appl. Phys. Lett., 65 (2002), p. 220401
[16] Phys. Rev. Lett., 93 (2004), p. 157203
[17] Phys. Rev. B, 66 (2002), p. 014407
[18] J. Appl. Phys., 91 (2002), p. 6812
[19] Phys. Rev. Lett., 93 (2004), p. 256602
[20] Nat. Mater., 3 (2004), p. 877
[21] J. Appl. Phys., 97 (2005), p. 10C708
[22] Phys. Rev. B, 67 (2003), p. 174402
[23] Appl. Phys. Lett., 85 (2004), p. 4681
[24] Phys. Rev. B, 62 (2000), p. 570
[25] Appl. Phys. Lett., 77 (2000), p. 3809
[26] Appl. Phys. Lett., 78 (2001), p. 3663
[27] Phys. Rev. B, 71 (2005), p. 184401
[28] Science, 285 (2002), p. 867
[29] Phys. Rev. Lett., 92 (2004), p. 088302
[30] Phys. Rev. B, 69 (2004), p. 134416
[31] J. Appl. Phys., 97 (2005), p. 10C701
[32] Phys. Rev. B, 68 (2004), p. 214414
[33] Nature, 425 (2003), p. 380
[34] Phys. Rev. Lett., 92 (2004), p. 027201
[35] J. Magn. Magn. Mat., 282 (2004), p. 264
[36] Cond. Mat., 0309191 (2003)
[37] Phys. Rev. Lett., 92 (2004), p. 167204
[38] Appl. Phys. Lett., 85 (2001), p. 5634
[39] Phys. Rev. Lett., 93 (2004), p. 216602
[40] M. Elsen, et al., Private communications, 2005
[41] Appl. Phys. Lett., 87 (2005), p. 082502
[42] Phys. Rev. Lett., 89 (2002), p. 196801
[43] Phys. Rev. B, 70 (2004), p. 100406(R)
[44] Phys. Rev. B, 72 (2005), p. 064430
[45] Phys. Rev. B, 69 (2004), p. 184406
[46] Phys. Rev. B, 69 (2004), p. 214409
[47] Science, 307 (2005), p. 228
[48] J. Appl. Phys., 55 (1984), p. 1954
[49] J. Appl. Lett., 57 (1985), p. 1266
[50] Phys. Rev. Lett., 92 (2004), p. 086601
[51] Europhys. Lett., 65 (2004), p. 427
[52] Phys. Rev. Lett., 92 (2004), p. 207203
[53] Europhys. Lett., 69 (2005), p. 990
[54] J. Appl. Phys., 83 (2003), p. 509
[55] Phys. Rev. Lett., 83 (2003), p. 105
[56] Europhys. Lett., 65 (2004), p. 526
[57] Phys. Rev. Lett., 92 (2004), p. 077205
[58] Phys. Rev. Lett., 95 (2004), p. 117203
[59] Appl. Phys. Lett., 84 (2004), p. 2820
[60] Science, 296 (2002), p. 5575
[61] Science, 309 (2005), p. 1688
[62] Appl. Phys. Lett., 86 (2005), p. 062505
[63] et al. J. Magn. Magn. Mater., 95 (2004), p. 7423
[64] Appl. Phys. Lett., 84 (2004), p. 4257
[65] Appl. Phys. Lett., 84 (2004), p. 3118
[66] Appl. Phys. Lett., 85 (2004), p. 1205
[67] Phys. Rev. B, 69 (2004), p. 184406
[68] Phys. Rev. Lett., 95 (2005), p. 067203
[69] Nature, 437 (2005), p. 389
[70] Nature, 437 (2005), p. 393
- Manipulation of Magnonic Activity by Electric Currents in Ferromagnetic Nanocylinders, SPIN, Volume 14 (2024) no. 04 | DOI:10.1142/s2010324724500139
- Magnetization switching by orange peel coupling in pentalayer nanopillar with dual polarizer, The European Physical Journal Plus, Volume 137 (2022) no. 9 | DOI:10.1140/epjp/s13360-022-03187-4
- Influence of grain boundaries, interface roughness and non-collinear magnetic configurations in the AF layer on the exchange bias properties of F/AF nanodots: A numerical investigation, Journal of Magnetism and Magnetic Materials, Volume 513 (2020), p. 167250 | DOI:10.1016/j.jmmm.2020.167250
- Magnetic Nanostructures and Spintronics, Encyclopedia of Nanotechnology (2016), p. 1850 | DOI:10.1007/978-94-017-9780-1_238
- Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID), Journal of Physics D: Applied Physics, Volume 49 (2016) no. 24, p. 243003 | DOI:10.1088/0022-3727/49/24/243003
- RECENT TRENDS IN SPINTRONICS-BASED NANOMAGNETIC LOGIC, SPIN, Volume 04 (2014) no. 03, p. 1450004 | DOI:10.1142/s2010324714500040
- Spin transfer switching characteristics in a [Pd/Co]m/Cu/[Co/Pd]n pseudo spin-valve nanopillar with perpendicular anisotropy, Journal of Applied Physics, Volume 111 (2012) no. 7 | DOI:10.1063/1.3675150
- State diagram of nanopillar spin valves with perpendicular magnetic anisotropy, Physical Review B, Volume 86 (2012) no. 1 | DOI:10.1103/physrevb.86.014419
- Kinetic self-organization of trenched templates for the fabrication of versatile ferromagnetic nanowires, Applied Physics Letters, Volume 90 (2007) no. 14 | DOI:10.1063/1.2718510
- Template-Grown NiFe/Cu/NiFe Nanowires for Spin Transfer Devices, Nano Letters, Volume 7 (2007) no. 9, p. 2563 | DOI:10.1021/nl070263s
Cité par 10 documents. Sources : Crossref
Commentaires - Politique