Magnetic random access memories (MRAM) are a new non-volatile memory technology trying establish itself as a mainstream technology. This paper reviews briefly the most important progress realized in the past 10 years. Basic MRAM cell operation is described as well as the main subsisting design challenges. Special emphasis is placed on bit write strategies and their respective scaling perspectives.
Les mémoires magnétiques à access aléatoire (MRAM) sont une nouvelle technologie de mémoires non volatiles cherchant à s'imposer comme une technologie majeure. Cet article fait un resumé des progrès les plus importants realisés au cours des 10 dernières années. Le mode de fonctionnement des MRAM est décrit ainsi que les défis qui subsistent encore pour leur réalisation. Les diverses stratégies d'écriture et leurs perspectives en termes de réduction de taille de cellule sont discutées.
Mots-clés : MRAM, Jonctions tunnel magnétiques, Mémoire
Ricardo C. Sousa 1; I. Lucian Prejbeanu 1
@article{CRPHYS_2005__6_9_1013_0, author = {Ricardo C. Sousa and I. Lucian Prejbeanu}, title = {Non-volatile magnetic random access memories {(MRAM)}}, journal = {Comptes Rendus. Physique}, pages = {1013--1021}, publisher = {Elsevier}, volume = {6}, number = {9}, year = {2005}, doi = {10.1016/j.crhy.2005.10.007}, language = {en}, }
Ricardo C. Sousa; I. Lucian Prejbeanu. Non-volatile magnetic random access memories (MRAM). Comptes Rendus. Physique, Spintronics, Volume 6 (2005) no. 9, pp. 1013-1021. doi : 10.1016/j.crhy.2005.10.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.10.007/
[1] High density submicron magnetoresistive random access memory, J. Appl. Phys., Volume 85 (1999), p. 5822
[2] P.K. Naji, M. Durlam, S. Tehrani, J. Calder, M.F. DeHerrera, A 256 kb 3.0 V 1T1MTJ nonvolatile magnetoresistive RAM, ISSCC Digest of Technical Papers (2001) 122–123
[3] R. Scheuerlein, A 10 ns read and write non-volatile memory array using a magnetic tunnel junction and a FET switch in each cell, ISSCC Digest of Technical Papers (2000) 128–129
[4] Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Phys. Rev. Lett., Volume 74 (1995), p. 3273
[5] Spin polarized tunneling in ferromagnetic junctions, J. Magn. Magn. Mater. (1999), pp. 248-273
[6] Spin tunneling in ferromagnetic junctions, Annu. Rev. Mater. Sci., Volume 29 (1999), p. 381
[7] 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers, IEEE Trans. Magn., Volume 40 (2004) no. 4, pp. 2269-2271
[8] Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater., Volume 3 (2004), p. 868
[9] Giant tunelling magnetoresistance at room temperature with MgO(100) tunnel barriers, Nat. Mater., Volume 3 (2004), p. 862
[10] Technology assessment for MRAM cells with magnet/semiconductor bits, IEEE Trans. Magn., Volume 35 (1999), p. 282
[11] Magnetic tunneling applied to memory, J. Appl. Phys., Volume 81 (1997), pp. 3758-3763
[12] Low resistance spin-dependent tunnel junctions deposited with a vacuum break and RF plasma oxidized, Appl. Phys. Lett., Volume 74 (1999), pp. 448-450
[13] W.J. Gallagher, J. Kaufman, S. Parkin, R. Scheuerlein, Magnetic memory array using magnetic tunnel junction devices in the memory cells, U.S. Patent 5640343, June 1997
[14] M. Durlam, S. Tehrani, J. Calder, M.F. DeHerrera, P.K. Naji, Non volatile RAM based on magnetic tunnel junction elements, ISSCC Digest of Technical Papers (2000) 130–131
[15] Vertical integration of a spin dependent tunnel junction with an amorphous Si diode, Appl. Phys. Lett., Volume 74 (1999), p. 3893
[16] Electrical characteristics of magnetic memory cells comprising magnetic tunnel junctions and GaAs diodes, Electron. Lett., Volume 36 (2000) no. 21, pp. 1782-1783
[17] Quantum coherent transport versus diode-like effect in semiconductor-free metal/insulator structure, Appl. Phys. Lett., Volume 79 (2001) no. 25, pp. 4231-4233
[18] Diode-free magnetic random access memory using spin-dependent tunneling effect, Appl. Phys. Lett., Volume 77 (2000) no. 13, pp. 2036-2038
[19] Switch-free read operation design and measurement of magnetic tunnel junction magnetic random access memory arrays, Appl. Phys. Lett., Volume 79 (2001) no. 17, pp. 2788-2790
[20] Bit yield improvement by precise control of stray fields from SAF pinned layers for high-density MRAMs, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10P508
[21] The effect of end and edge shape on the performance of pseudo-spin valve memory cells, IEEE Trans. Magn., Volume 34 (1998) no. 4, pp. 1066-1068
[22] Switching dependence on fabrication accuracy of tapered ends of a single giant magnetoresistance memory cell in word disturb condition, J. Appl. Phys., Volume 85 (1999), pp. 6193-6195
[23] Improvement of writing margin in MRAM with novel shape, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10P509
[24] MRAM array with coupled soft-adjacent magnetic layer, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10P506
[25] Size-independent spin switching field using synthetic antiferromagnets, Appl. Phys. Lett., Volume 82 (2003) no. 16, pp. 2667-2669
[26] Magnetic switching field and giant magnetoresistance effect of multilayers with synthetic antiferromagnet free layers, Appl. Phys. Lett., Volume 81 (2002) no. 2, pp. 310-312
[27] Switching field distribution in magnetic tunnel junctions with a synthetic antiferromagnetic free layer, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10C905
[28] Thermally activated magnetization reversal in submicron magnetic tunnel junctions for magnetoresistive random access memory, Appl. Phys. Lett., Volume 80 (2002) no. 13, pp. 2335-2337
[29] The switching properties of patterned synthetic ferrimagnetic structures, Appl. Phys. Lett., Volume 85 (2004) no. 12, pp. 2289-2291
[30] Thermal stability parameters in synthetic antiferromagnetic free layers in magnetic tunnel junctions, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10C914
[31] L. Savchenko, B.N. Engel, N.D. Rizzo, M.F.D. Herrera, J.A. Janesky, U.S. Patent No. 6,545,906, April 2003
[32] Spin flop switching for magnetic random access memory, Appl. Phys. Lett., Volume 84 (2004) no. 22, pp. 4559-4561
[33] Critical-field curves for switching toggle mode magnetoresistance random access memory devices (invited), J. Appl. Phys., Volume 97 (2005) no. 10, p. 10P507
[34] Magnetoresistive random access memory operation error by thermally activated reversal (invited), J. Appl. Phys., Volume 97 (2005) no. 10, p. 10P503
[35] Inductive measurement of ultrafast magnetization dynamics in thin-film permalloy, J. Appl. Phys., Volume 85 (1999) no. 11, pp. 7849-7861
[36] E. Chen, S. Tehrani, M. Durlam, T. Zhu, Magnetic memory and method therefor, U.S. Patent 5659499, August 1997
[37] Low-current blocking temperature writing of double barrier magnetic random access memory cells, Appl. Phys. Lett., Volume 84 (2004) no. 6, pp. 945-947
[38] Design of Curie point written magnetoresistance random access memory cells, J. Appl. Phys., Volume 93 (2003) no. 10, pp. 7304-7306
[39] Thermal noise limitations to magnetoresistive memory element thresholds, J. Appl. Phys., Volume 63 (1988) no. 8, pp. 3151-3152
[40] Thermally assisted switching in exchange-biased storage layer magnetic tunnel junctions, IEEE Trans. Magn., Volume 40 (2004) no. 4, pp. 2625-2627
[41] Thermally assisted-writing giant magnetoresistance with perpendicular magnetization, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10C511
[42] Curie point written magnetoresistive memory, J. Appl. Phys., Volume 87 (2000) no. 9, pp. 6403-6405
[43] Tunneling hot spots and heating in magnetic tunnel junctions, J. Appl. Phys., Volume 95 (2004) no. 11, pp. 6783-6785
[44] Dynamic heating in submicron size magnetic tunnel junctions with exchange biased storage layer, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10P501
[45] Switching characteristics and magnetization vortices of thin-film cobalt in nanometer-scale patterned arrays, Appl. Phys. Lett., Volume 76 (2000) no. 25, pp. 3780-3782
[46] Minimum field strength in precessional magnetization reversal, Science, Volume 285 (1999) no. 6, p. 864
[47] Bifurcation in precessional switching, Appl. Phys. Lett., Volume 79 (2001), pp. 2228-2230
[48] Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping, Nature (London), Volume 418 (2002), pp. 509-512
[49] Switching behavior of a stoner particle beyond the relaxation time limit, Phys. Rev. B, Volume 61 (2000) no. 5, pp. 3410-3416
[50] Precessional switching of submicrometer spin valves, Appl. Phys. Lett., Volume 80 (2002) no. 16, pp. 2958-2960
[51] Quasiballistic magnetization reversal, Phys. Rev. Lett., Volume 90 (2003), pp. 017204-017207
[52] Precessional switching of the magnetization in microscopic tunnel junctions (invited), J. Appl. Phys., Volume 93 (2003) no. 10, pp. 7290-7294
[53] Cell writing selection when using precessional switching in a magnetic random access memory, J. Appl. Phys., Volume 95 (2004) no. 4, pp. 1933-1941
[54] Precessional direct-write switching in micrometer-sized magnetic tunnel junctions, J. Appl. Phys., Volume 97 (2005), pp. 074503-074508
[55] Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater., Volume 159 (1996) no. 1–2, p. L1-L7
[56] Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, Volume 54 (1996), p. 9353
[57] Spin-polarized current switching of a Co thin film nanomagnet, Appl. Phys. Lett., Volume 77 (2000) no. 23, pp. 3809-3811
[58] Spin-polarized current induced switching in Co/Cu/Co pillars, Appl. Phys. Lett., Volume 78 (2001) no. 23, p. 3663
[59] Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars, Phys. Rev. Lett., Volume 84 (2000) no. 14, pp. 3149-3152
[60] Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions, Appl. Phys. Lett., Volume 84 (2004), pp. 3118-3120
[61] Multilayer configuration for experiments of spin precession induced by a dc current, J. Appl. Phys., Volume 93 (2003), pp. 7693-7695
[62] Estimation of thermal durability and intrinsic critical currents of magnetization switching for spin-transfer based magnetic random access memory, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10C707
[63] Substantial reduction of critical current for magnetization switching in an exchange-biased spin valve, Nat. Mater., Volume 3 (2004), pp. 361-364
[64] Subnanosecond magnetization reversal in magnetic nanopillars by spin angular momentum transfer, Appl. Phys. Lett., Volume 85 (2004), pp. 5358-5360
[65] Spin-current interaction with a monodomain magnetic body: A model study, Phys. Rev. B, Volume 62 (2000), pp. 570-578
[66] Low-resistance spin-dependent tunnel junctions with ZrAlOx barriers, Appl. Phys. Lett., Volume 79 (2001) no. 27, pp. 4553-4555
[67] Effective reduction of critical current for current-induced magnetization switching by a Ru layer insertion in an exchange-biased spin valve, Phys. Rev. Lett., Volume 92 (2004), pp. 167204-167207
[68] Low resistance spin-dependent magnetic tunnel junction with high breakdown voltage for current-induced-magnetization-switching devices, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10C926
[69] Thermally activated magnetic reversal induced by a spin-polarized current, Phys. Rev. Lett., Volume 89 (2002), pp. 196801-196804
[70] Low-current spin-transfer switching and its thermal durability in a low-saturation-magnetization nanomagnet, Appl. Phys. Lett., Volume 85 (2004) no. 23, pp. 5634-5636
[71] H. Kano, K. Bessho, Y. Higo, K. Ohba, M. Hashimoto, T. Mizuguchi, M. Hosomi, MRAM with improved magnetic tunnel junction material, in: INTERMAG Europe 2002, Digest of Technical Papers (2002) BB4
[72] Ultrafast magnetization reversal dynamics investigated by time domain imaging, Phys. Rev. Lett., Volume 86 (2001), pp. 728-731
[73] Precharging strategy to accelerate spin-transfer switching below the nanosecond, Appl. Phys. Lett., Volume 86 (2005), pp. 062505-062507
Cited by Sources:
Comments - Policy