Since the invention of the hard-disk drive in 1956, the technology of the magnetic head sensor has never ceased to evolve. Today's sensors are drastically different from those used in these early heads; they can detect and transmit information from recorded data at densities greater than 200 Gbit/in2 and data rates approaching 1 GHz. Numerous advances in nanomagnetics, magnetic ultrathin films, magneto-electronics, as well as device processing, have fueled the remarkable progress of this technology. An overview of the science and technology behind magnetic read head sensors is presented. The dimensional, geometrical and magnetic requirements for the heads are first described, followed by a description of the state of the art giant-magnetoresistive read sensors. We then discuss characteristics and potential advantages of next-generation read sensors, including current-perpendicular-to-plane tunnel-magnetoresistance and giant magnetoresistive sensors. The interplay between sensor properties, size requirements, process limitations and head performance is emphasized.
Depuis l'invention du disque dur en 1956, la technologie des capteurs pour têtes de lecture magnétiques n'a cessé d'évoluer. Les capteurs actuels diffèrent profondément de ceux qui étaient utilisés dans ces premières têtes ; ils peuvent détecter et transmettre l'information de données enregistrées avec des densités supérieures à 200 Gbits/pouce carré, et ceci à des taux approchant 1 GHz. Ces progrès technologiques remarquables ont été alimentés par de nombreuses avancées en nanomagnétisme, en magnéto-électronique et en process des dispositifs. Nous présentons un panorama de la science et de la technologie des capteurs pour têtes de lecture. Nous décrivons tout d'abord les conditions que doivent remplir les têtes en termes de dimensions, de géométrie et de magnétisme, puis l'état de l'art en matière de capteurs de lecture à magnétorésistance géante. Nous discutons ensuite les caractéristiques et les avantages potentiels de la prochaine génération de capteurs de lecture, en particulier les capteurs à magnétorésistance tunnel et à magnétorésistance géante fonctionnant avec courant normal au plan. Nous soulignons l'interdépendance entre propriétés des capteurs, contraintes dimensionnelles, limitations des process et performances des têtes.
Mots-clés : Capteurs pour têtes de lecture magnétiques, Capteurs de lecture à magnétorésistance
Jeffrey R. Childress 1; Robert E. Fontana 1
@article{CRPHYS_2005__6_9_997_0, author = {Jeffrey R. Childress and Robert E. Fontana}, title = {Magnetic recording read head sensor technology}, journal = {Comptes Rendus. Physique}, pages = {997--1012}, publisher = {Elsevier}, volume = {6}, number = {9}, year = {2005}, doi = {10.1016/j.crhy.2005.11.001}, language = {en}, }
Jeffrey R. Childress; Robert E. Fontana. Magnetic recording read head sensor technology. Comptes Rendus. Physique, Spintronics, Volume 6 (2005) no. 9, pp. 997-1012. doi : 10.1016/j.crhy.2005.11.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.11.001/
[1] Ultrathin Magnetic Structures IV: Applications of Nanomagnetism (B. Heinrich; J.A.C. Bland, eds.), Springer-Verlag, Berlin/New York, 2005, pp. 149-174
[2] IBM, J. Res. Development, Volume 42 (1998), pp. 103-116
[3] J. Appl. Phys., 87 (2000), pp. 5371-5376
[4] IEEE Trans. Magn., 38 (2002) no. 1, p. 95
[5] 20th Annual AIP Conf. Proc., American Institute of Physics, 1974, p. 24
[6] M.T. Krounbi, W.J. Van Gestel, P.-K.Wang, U.S. patents #5,005,096 and #5,018,037 (1991)
[7] Horizontal Biasing Techniques, Academic Press, San Diego, 1996 (Chapter 6)
[8] J. Appl. Phys., 79 (1996), p. 5018
[9] IEEE Trans. Magn., 30 (1994), pp. 316-321
[10] R.E. Fontana, B. Gurney, T. Lin, V. Speriosu, C. Tsang, D. Wilhoit, U.S. patent #5,701,223
[11] W.Y. Lee, T. Lin, D. Mauri, R.W. Wilson, U.S. patent # 6,141,191 (2000)
[12] J. Appl. Phys., 87 (2000), p. 5714
[13] et al. J. Appl. Phys., 85 (1999), p. 4928
[14] IEEE Trans. Magn., 32 (1996), p. 3363
[15] K.R. Coffey, B. Gurney, D. Heim, H. Lefakis, D. Mauri, V. Speriosu, D. Wilhoit, U.S. patent #5,583,725 (1996)
[16] J. Appl. Phys., 89 (2001), pp. 6931-6933
[17] W. Kula, A. Zeltser, U.S. patent #6,700,754 (2004)
[18] A. Zeltser, Private communication (2005)
[19] Appl. Phys. Lett., 78 (2001), pp. 2181-2183
[20] et al. IEEE Trans. Magn., 32 (1996) no. 5, p. 3440
[21] Phys. Rev. Lett., 74 (1995), p. 3273
[22] IEEE Trans. Magn., 40 (2004), pp. 195-202
[23] IEEE Trans. Magn., 36 (2000), p. 2549
[24] S. Mao, F. Liu, B. Xu, H. Xi, P. Lu, J. Shen, X. Chen, C. Chang, B. Miller, M. Patwari, B. Pant, J. Loven, J. Gadbois, B. Cross, J. Ding, P. Ryan, in: 2005 TMRC Conference, Palo Alto, paper A2; IEEE Trans. Magn., submitted for publication
[25] J. Appl. Phys., 41 (1970), p. 1915
[26] IEEE Trans. Magn., 89 (2001), p. 7353
[27] Phys. Rev. B, 63 (2001), p. 054416
[28] Nature Mater., 43 (2004), p. L588
[29] Appl. Phys. Lett., 87 (2005) no. 1 (art. no. 072503)
[30] IEEE Trans. Magn., 33 (1997), pp. 3505-3510
[31] IEEE Trans. Magn., 38 (2002), p. 2277
[32] J. Appl. Phys., 92 (2002), p. 2646
[33] Digests of Intermag 2005 Conference, IEEE, Nagoya, 2005 (paper FB-02)
[34] IEEE Trans. Magn., 39 (2003), p. 2377
[35] IEEE Trans. Magn., 38 (2002), p. 2286
[36] IEEE Trans. Magn., 40 (2004), p. 189
[37] IEEE Trans. Magn., 37 (2001), p. 1687
[38] N. Smith, J.A. Katine, J.R. Childress, M.J. Carey, in: Intermag Conference 2005, Nagoya, paper FB-04; IEEE Trans. Magn. (2005), in press
[39] J.R. Childress, M.J. Carey, S.I. Kiselev, J.A. Katine, S. Maat, N. Smith, in: 2005 MMM Conference, San Jose, paper HB-05; J. Appl. Phys. (2006), in press
[40] IEEE Trans. Magn., 38 (2002), p. 32
[41] IEEE Trans. Magn., 36 (2000), pp. 4-9
[42] J. Appl. Phys., 87 (2000), p. 5398
[43] IEEE Trans. Magn., 35 (1999), p. 4423
[44] IEEE Trans. Magn., 40 (2004), pp. 295-300
[45] Phys. Rev. Lett., 74 (1995), pp. 5260-5263
[46] Appl. Phys. Lett., 80 (2002), pp. 3364-3366
[47] Appl. Phys. Lett., 80 (2002), p. 4012
Cited by Sources:
Comments - Policy