[Développement de nouveaux matériaux pour la spintronique]
Nous présentons ici une revue de l'état de l'art actuel en matière de recherche fondamentale sur les matériaux pour la spintronique. L'article est essentiellement dédié aux matériaux présentant de nouvelles propirétés électroniques : les manganites, les doubles pérovskites, les ferrites spinelles et les semiconducteurs magnétiques dilués. Pour chacune de ces classes de matériaux, nous présenterons les principales caractéristiques ainsi que les plus importants résultats obtenus par leur aide dans le domaine de la spintronique et de la physique du solide.
This article presents a review of the state of the art of materials used in spintronics. It is devoted to materials exhibiting novel and exciting electronic properties: manganites, double perovskites, spinel ferrites and diluted magnetic semiconductors. We present the main features of these classes of materials as well as the most important solid state physics results obtained from them in the field of spintronics.
Mots-clés : Electronique de spin, Semiconducteurs magnétiques, Manganites, Perovskite, Ferrites, Filtre à spin, Demi-métal
Joël Cibert 1 ; Jean-François Bobo 2 ; Ulrike Lüders 2
@article{CRPHYS_2005__6_9_977_0, author = {Jo\"el Cibert and Jean-Fran\c{c}ois Bobo and Ulrike L\"uders}, title = {Development of new materials for spintronics}, journal = {Comptes Rendus. Physique}, pages = {977--996}, publisher = {Elsevier}, volume = {6}, number = {9}, year = {2005}, doi = {10.1016/j.crhy.2005.10.008}, language = {en}, }
Joël Cibert; Jean-François Bobo; Ulrike Lüders. Development of new materials for spintronics. Comptes Rendus. Physique, Spintronics, Volume 6 (2005) no. 9, pp. 977-996. doi : 10.1016/j.crhy.2005.10.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.10.008/
[1] Geochemistry, Oxford University Press, 1958
[2] Proc. R. Soc. (London) A, 161 (1937), p. 220
[3] Proc. R. Soc. (London) A, 164 (1938), p. 117
[4] et al. J. Appl. Phys., 81 (1997), p. 1372
[5] Phys. Rev. B, 54 (1996), p. R15622
[6] et al. Phys. Rev. B, 52 (1995), p. 15046
[7] et al. Phys. Rev. B, 54 (1996), p. 1187
[8] et al. Appl. Phys. Lett., 75 (1999), p. 1446
[9] et al. Appl. Phys. Lett., 73 (1998), p. 2672
[10] et al. Phys. Rev. Lett., 75 (1995), p. 336
[11] Can. J. Phys., 47 (1969), p. 2703
[12] et al. J. Appl. Phys., 87 (2000), p. 6773
[13] et al. Phys. Rev. B, 53 (1996), p. R1689
[14] et al. J. Appl. Phys., 94 (2003), p. 2524
[15] J. Magn. Magn. Mater., 24 (1999), p. 200
[16] et al. J. Appl. Phys. Lett., 82 (2002)
[17] et al. Phys. Rev. Lett., 81 (1998), p. 1953
[18] et al. J. Appl. Phys., 81 (1997), p. 5324
[19] et al. Phys. Rev. Lett., 74 (1995), p. 5108
[20] et al. Nature, 395 (1998), p. 677
[21] et al. Appl. Phys. Lett., 6 (2001), p. 781
[22] et al. Appl. Phys. Lett., 83 (2003), p. 2629
[23] et al. Phys. Rev. B, 72 (2005), p. R020406
[24] et al. Rep. Prog. Phys., 15 (1952), p. 142
[25] Modern Magnetic Materials: Principles and Applications, Wiley-Interscience, 1999
[26] Ann. Phys., 3 (1948), p. 167
[27] J. Mag. Mag. Mat., 54 (1986), p. 2024
[28] et al. Phys. Rev. B, 65 (2002), p. 064417
[29] et al. Appl. Phys. Lett., 73 (1998), p. 3282
[30] et al. Appl. Phys. Lett., 74 (1999), p. 4017
[31] Phys. Rev. Lett., 89 (2002), p. 276601
[32] et al. J. Appl. Phys., 93 (2003), p. 7561
[33] et al. J. Appl. Phys., 83 (1998), p. 7366
[34] J. Phys. Condens. Matter, 13 (2001), p. 7987
[35] et al. Thin Solid Films, 400 (2001), p. 90
[36] et al. Phys. Rev. B, 70 (2004), p. 052409
[37] et al. J. Appl. Phys., 95 (2004), p. 7222
[38] et al. Phys. Rev. B, 71 (2005), p. 134419
[39] M. Bibes et al., in: Proceedings of the 9th International Conference on Ferrites, 2004
[40] et al. (submitted for publication) | arXiv
[41] et al. Phys. Rev. Lett., 61 (1988), p. 637
[42] et al. Phys. Rev. Lett., 70 (1993), p. 853
[43] Phys. Rev. B, 69 (2004), p. 241203
[44] et al. Appl. Phys. Lett., 80 (2002), p. 625
[45] U. Lüders et al., submitted for publication. See also: U. Lüders: Development and integration of thin spinel oxide films into heterostructures for spintronics, Institut National des Sciences Appliquées de Toulouse, PhD thesis
[46] Science, 281 (1998), p. 951
[47] Phys. Rep., 346 (2001), p. 387
[48] et al. Phys. Rev. Lett., 29 (1972), p. 1168
[49] et al. Phys. Rev. Lett., 94 (2005), p. 037205
[50] Phys. Rev. B, 55 (1997), p. R3347
[51] et al. Science, 287 (2000), p. 1019
[52] Phys. Rev., 81 (1950), p. 440
[53] Solid State Commun., 29 (1979), p. 435
[54] et al. Phys. Rev. B, 63 (2001), p. 195205
[55] et al. Phys. Rev. B, 70 (2004), p. 245325
[56] et al. Physica E, 21 (2003), p. 943
[57] J. Phys. Condens. Matter, 15 (2003), p. R1865
[58] et al. Europhys. Lett., 69 (2005), p. 812
[59] J. Appl. Phys., 64 (1988), p. R29
[60] et al. Solid State Commun., 51 (1984), p. 849
[61] et al. Nature, 402 (1999), p. 787
[62] et al. Phys. Rev. Lett., 91 (2003), p. 077201
[63] et al. J. Magn. Magn. Mater., 169 (1997), p. 151 (and ref. therein)
[64] et al. Appl. Phys. Lett., 62 (1993), p. 2399
[65] et al. Phys. Rev. B, 63 (2001), p. 085201
[66] et al. Phys. Rev. Lett., 91 (2003), p. 087205
[67] Phys. Rev. B, 37 (1988), p. 10111
[68] et al. Phys. Rev. Lett., 59 (1987), p. 240
[69] et al. Phys. Rev. Lett., 63 (1989), p. 1849
[70] et al. Phys. Rev. Lett., 68 (1992), p. 2664
[71] et al. Appl. Phys. Lett., 69 (1996), p. 363
[72] et al. Nature, 408 (2000), p. 944
[73] et al. Appl. Phys. Lett., 82 (2003), p. 3020
[74] et al. Phys. Rev. Lett., 92 (2004), p. 037201
[75] et al. Appl. Phys. Lett., 86 (2005), p. 132501
[76] et al. Appl. Phys. Lett., 86 (2005), p. 112501
[77] et al. | arXiv
[78] et al. Appl. Phys. Lett., 82 (2003), p. 2301
[79] et al. Appl. Phys. Lett., 78 (2001), p. 1691
[80] et al. Appl. Phys. Lett., 81 (2002), p. 4991
[81] et al. Phys. Rev. B, 65 (2002), p. 201303
[82] K.W. Edmonds, et al., in: J. Mendez, C. Van de Walle (Eds.), Proc. 27th International Conference on the Physics of Semiconductors, Flagstaff, July 2004, 2005, p. 333
[83] et al. Appl. Phys. Lett., 83 (2003), p. 4220
[84] et al. Appl. Phys. Lett., 84 (2004), p. 2277
[85] et al. Phys. Rev. Lett., 92 (2004), p. 227202
[86] et al. | arXiv
[87] et al. Jpn. J. Appl. Phys., 40 (2001), p. L1274
[88] et al. Phys. Rev. B, 65 (2002), p. R041306
[89] et al. Phys. Rev. Lett., 78 (1997), p. 4617
[90] et al. Phys. Rev. Lett., 94 (2005), p. 227203
[91] et al. Appl. Phys. Lett., 85 (2004), p. 4941
[92] et al. Phys. Rev. Lett., 95 (2005), p. 017201
[93] et al. Nature Materials, 03 (2004), p. 455
[94] et al. Science, 295 (2002), p. 651
[95] et al. Phys. Rev. B, 66 (2002), p. 033303
[96] et al. Appl. Phys. Lett., 86 (2005), p. 062501
[97] et al. Phys. Rev. Lett., 91 (2003), p. 177203
[98] et al. Phys. Rev. Lett., 94 (2005), p. 147202
[99] Jpn. J. Appl. Phys., 39 (2000), p. L555
[100] T. Dietl, in: J. Mendez, C. Van de Walle (Eds.), Proc. 27th International Conference on the Physics of Semiconductors, Flagstaff, July 2004, 2005, p. 56
[101] Nature Materials, 4 (2005), p. 195
[102] et al. Physica B, 324 (2002), p. 142
[103] et al. Appl. Phys. Lett., 85 (2004), p. 3777
[104] et al. J. Magn. Magn. Mater., 272–276 (2004), p. 1557
[105] et al. Phys. Rev. B, 69 (2004), p. 115210
[106] et al. Phys. Rev. B, 70 (2004), p. 245202
[107] et al. J. Appl. Phys., 93 (2003), p. 9697
[108] et al. Appl. Phys. Lett., 81 (2002), p. 5159
[109] et al. Appl. Phys. Lett., 84 (2004), p. 5320
[110] et al. Phys. Rev. B, 72 (2005)
[111] et al. Semicond. Sci. Technol., 19 (2004), p. L13
[112] et al. Appl. Phys. Lett., 86 (2005), p. 152114
[113] et al. Appl. Phys. Lett., 79 (2001), p. 988
[114] et al. J. Appl. Phys., 93 (2003), p. 7876
[115] et al. Appl. Phys. Lett., 84 (2004), p. 2292
[116] et al. Nature Materials, 2 (2003), p. 673
[117] et al. Nature Materials, 3 (2004), p. 709
[118] et al. Appl. Phys. Lett., 81 (2002), p. 4020
[119] et al. Phys. Rev. Lett., 93 (2004), p. 177206
[120] et al. J. Appl. Phys., 93 (2003), p. 7676
[121] et al. Appl. Phys. Lett., 78 (2001), p. 2700
[122] et al. | arXiv
[123] P. Sati et al., in: Proc. 12th International Conference on II–VI Compounds, Warsaw, 2005
[124] et al. Phys. Rev. B, 69 (2004), p. R041308
[125] et al. | arXiv
[126] et al. Phys. Rev. Lett., 94 (2005), p. 147209
[127] et al. Nature Materials, 4 (2005), p. 173
[128] et al. Phys. Rev. Lett., 90 (2003), p. 207202
[129] et al. Phys. Stat. Sol. C, 1 (2004), p. 957
[130] et al. Journal of Superconductivity: Incorporating Novel Magnetism, 18 (2005), p. 29
[131] S. Marcet et al., in preparation
[132] et al. Phys. Rev. Lett., 79 (1997), p. 511
[133] et al. Phys. Rev. Lett., 88 (2002), p. 207204
[134] et al. J. Appl. Phys., 97 (2005), p. 10D304
[135] et al. Phys. Rev. B, 67 (2003), p. 241308
[136] et al. Phys. Rev. Lett., 88 (2002), p. 027402
[137] et al. Phys. Rev. B, 62 (2000), p. 7767
[138] et al. | arXiv
[139] et al. Phys. Rev. Lett., 93 (2004), p. 207403
[140] et al. J. Vac. Sci. Technol. B, 23 (2005), p. 1376
[141] et al. Advanced Materials, 17 (2005), p. 1351
[142] et al. J. Vac. Sci. Technol. B, 23 (2005), p. 530
[143] et al. Appl. Phys. Lett., 85 (2004), p. 2589
- Enhancement of the magnetocaloric effect in Nd0.6-Gd Sr0.4MnO3 (0.02 ≤ x ≤ 0.1) perovskite manganites: The role of Gd3+ ionic substitution, Materials Chemistry and Physics, Volume 329 (2025), p. 130109 | DOI:10.1016/j.matchemphys.2024.130109
- Probing temperature-dependent magnetism in cobalt and zinc ferrites: A study through bulk and atomic-level magnetic measurements for spintronics, Journal of Magnetism and Magnetic Materials, Volume 593 (2024), p. 171867 | DOI:10.1016/j.jmmm.2024.171867
- Electrical, magnetic, and magnetoresistance studies in chromium-doped Pr-based manganites, Journal of Materials Science: Materials in Electronics, Volume 35 (2024) no. 19 | DOI:10.1007/s10854-024-13054-w
- Structure-Related Electronic and Magnetic Properties in Ultrathin Epitaxial NixFe3−xO4 Films on MgO(001), Nanomaterials, Volume 14 (2024) no. 8, p. 694 | DOI:10.3390/nano14080694
- Effects of A, B-site multiple ion co-doping on the structure, magnetic, magnetocaloric effect, and critical behavior of La0.7-xNd0.1Sr0.2KxMn0.95Ni0.05O3 ceramics, Ceramics International, Volume 49 (2023) no. 20, p. 32663 | DOI:10.1016/j.ceramint.2023.07.235
- Time-resolved high-energy X-ray diffraction studies of ultrathin Ni ferrite films on MgO(001), Journal of Applied Crystallography, Volume 56 (2023) no. 6, p. 1784 | DOI:10.1107/s1600576723009287
- A comparative study of magnetic, and magnetocaloric properties of different transition metal-doped La0.67Sr0.33AO3 (A: Mn, Co, Cr, and Fe) samples, Journal of Materials Science: Materials in Electronics, Volume 34 (2023) no. 16 | DOI:10.1007/s10854-023-10654-w
- Impact of copper substitution on the magnetism and transport properties of La0.7Ba0.25Nd0.05Mn1−Cu O3 (x = 0, 0.03, 0.05, and 0.07), Materialia, Volume 27 (2023), p. 101703 | DOI:10.1016/j.mtla.2023.101703
- Structural, Electronic, and Magnetic Properties of Sr
Mn F Alloys Studied by First-principles Calculations, Communications in Physics, Volume 32 (2022) no. 2, p. 157 | DOI:10.15625/0868-3166/16457 - Role of nickel substitution in the structural, magnetic properties, and magnetocaloric effect in La0.67Ba0.22Sr0.11Mn0.95Ni0.05O3 sample, Journal of Materials Science: Materials in Electronics, Volume 33 (2022) no. 30, p. 23524 | DOI:10.1007/s10854-022-09113-9
- Enhancement of magnetic entropy change in La0.57Nd0.1Sr0.33-xCaxMnO3 manganites, Journal of Materials Science: Materials in Electronics, Volume 33 (2022) no. 35, p. 26495 | DOI:10.1007/s10854-022-09328-w
- Real-Time Monitoring the Growth of Epitaxial CoxFe3−xO4 Ultrathin Films on Nb-Doped SrTiO3(001) via Reactive Molecular Beam Epitaxy by Means of Operando HAXPES, Materials, Volume 15 (2022) no. 7, p. 2377 | DOI:10.3390/ma15072377
- Influence of Ni content on structural, magnetocaloric and electrical properties in manganite La0.6Ba0.2Sr0.2Mn1−xNixO3 (0 ≤ x ≤ 0.1) type perovskites, RSC Advances, Volume 12 (2022) no. 7, p. 3935 | DOI:10.1039/d1ra07059b
- Investigation of the dielectric response and the transport properties of samarium and strontium-based manganite, The European Physical Journal Plus, Volume 137 (2022) no. 3 | DOI:10.1140/epjp/s13360-022-02640-8
- Structural, morphological and dielectric analyses of La1 − xSrxFeO3 solid solutions, Applied Physics A, Volume 127 (2021) no. 9 | DOI:10.1007/s00339-021-04825-x
- Сomparative analysis of the change of oxygen nonstoichiometry and superstructural ordering of Fe/Mo cations in the strontium ferromolybdate, Doklady BGUIR, Volume 19 (2021) no. 2, p. 14 | DOI:10.35596/1729-7648-2021-19-2-14-21
- Giant magnetocaloric effect and magnetic properties of nanocomposites of manganite Nd1-Sr MnO3 (0.0 ≤ x ≤ 0.8) synthesized using modified sol-gel method, Journal of Alloys and Compounds, Volume 857 (2021), p. 157566 | DOI:10.1016/j.jallcom.2020.157566
- Structural, magnetic and magnetocaloric effect studies of Nd0.6Sr0.4A Mn1-O3 (A=Co, Ni, Zn) perovskite manganites, Journal of Alloys and Compounds, Volume 875 (2021), p. 159977 | DOI:10.1016/j.jallcom.2021.159977
- Structural, electronic and magnetic properties of the perovskite Ymno3, Solid State Communications, Volume 328 (2021), p. 114254 | DOI:10.1016/j.ssc.2021.114254
- Real-time monitoring the growth of strained off-stoichiometric NixFe3−xO4 ultrathin films on MgO(001), Applied Physics Letters, Volume 117 (2020) no. 1 | DOI:10.1063/5.0013925
- SMALL-ANGLE SCATTERING OF NEUTRONS ON Sr2FeMoO6–δ SAMPLES WITH DIFFERENT-DEGREE SUPERSTRUCTURAL ORDERING OF Fe/Mo CATIONS, Doklady BGUIR, Volume 18 (2020) no. 2, p. 5 | DOI:10.35596/1729-7648-2020-18-2-5-13
- A DFT investigation on magnetoelectric coupling in PbBO3 (B = V, Cr, Mn, Co, and Cu) materials: The influence on multiferroic properties, Journal of Magnetism and Magnetic Materials, Volume 500 (2020), p. 166364 | DOI:10.1016/j.jmmm.2019.166364
- The influence of cation ordering and oxygen nonstoichiometry on magnetic properties of Sr2FeMoO6– around Curie temperature, Journal of Magnetism and Magnetic Materials, Volume 500 (2020), p. 166386 | DOI:10.1016/j.jmmm.2019.166386
- Elastic anisotropy, electronic and magnetic behaviours of ferromagnetic Europium Niobate EuNbO3in orthorhombic structure: DFT + U, MFA and QTAIM studies, Philosophical Magazine, Volume 100 (2020) no. 22, p. 2889 | DOI:10.1080/14786435.2020.1798536
- Effect of Ni substitution at Mn-site on structural and electronic properties of monovalent-dopedPr0.75Na0.25MnO3 manganite: Experimental and first principles LDA+U studies, Physica B: Condensed Matter, Volume 579 (2020), p. 411904 | DOI:10.1016/j.physb.2019.411904
- Enhanced magnetization of ultrathin NiFe2O4 films on SrTiO3(001) related to cation disorder and anomalous strain, Physical Review Materials, Volume 4 (2020) no. 6 | DOI:10.1103/physrevmaterials.4.064404
- Electrophysical Properties of Sr2FeMoO6–δ Ceramics with Dielectric Shells, Fundamental and Applied Nano-Electromagnetics II (2019), p. 21 | DOI:10.1007/978-94-024-1687-9_2
- Room temperature magnetocaloric effect and critical behavior in La0.67Ca0.23Sr0.1Mn0.98Ni0.02O3 oxide, Journal of Materials Science: Materials in Electronics, Volume 30 (2019) no. 13, p. 11868 | DOI:10.1007/s10854-019-01510-x
- Formation of ultrathin cobalt ferrite films by interdiffusion ofFe3O4/CoObilayers, Physical Review B, Volume 100 (2019) no. 15 | DOI:10.1103/physrevb.100.155418
- Inducement of ferromagnetic–metallic phase and magnetoresistance behavior in charged ordered monovalent-doped Pr0.75Na0.25MnO3 manganite by Ni substitution, Solid State Sciences, Volume 87 (2019), p. 64 | DOI:10.1016/j.solidstatesciences.2018.11.005
- Small‐Angle Neutron Scattering and Magnetically Heterogeneous State in Sr2FeMoO6–δ, physica status solidi (b), Volume 256 (2019) no. 5 | DOI:10.1002/pssb.201800428
- Characteristic features of the magnetoresistance in the ferrimagnetic (Sr2FeMoO6-δ) – dielectric (SrMoO4) nanocomposite, AIP Advances, Volume 8 (2018) no. 5 | DOI:10.1063/1.5007268
- Effect of Cr 3+ substitution at Mn-site on electrical and magnetic properties of charge ordered Bi 0.3 Pr 0.3 Ca 0.4 MnO 3 manganites, Physica B: Condensed Matter, Volume 544 (2018), p. 34 | DOI:10.1016/j.physb.2018.05.020
- Effect of trivalent rare earth doping on magnetic and magnetocaloric properties of La 0.47 (Y,Eu) 0.2 Pb 0.33 MnO 3 manganites, Ceramics International, Volume 43 (2017) no. 1, p. 1390 | DOI:10.1016/j.ceramint.2016.10.098
- Effect of indium substitution on structural, magnetic and magnetocaloric properties of La0.5Sm0.1Sr0.4Mn1−xInxO3 (0 ≤ x ≤ 0.1) manganites, Journal of Alloys and Compounds, Volume 691 (2017), p. 578 | DOI:10.1016/j.jallcom.2016.08.268
- Effect of (Al, Sn) doping on structural, magnetic and magnetocaloric properties of La 0.7 Ca 0.1 Pb 0.2 Mn 1−x−y Al x Sn y O 3 (0 ≤ x,y ≤ 0.075) manganites, Journal of Alloys and Compounds, Volume 699 (2017), p. 619 | DOI:10.1016/j.jallcom.2016.12.324
- Inducement of ferromagnetic-metallic phase in intermediate-doped charge-ordered Pr 0.75 Na 0.25 MnO 3 manganite by K + substitution, Physica B: Condensed Matter, Volume 521 (2017), p. 281 | DOI:10.1016/j.physb.2017.07.001
- Effect of trivalent rare earth doping on magnetic and magnetocaloric properties of Pr0.5(Ce,Eu,Y)0.1Sr0.4MnO3 manganites, Applied Physics A, Volume 122 (2016) no. 6 | DOI:10.1007/s00339-016-0125-5
- Nanoscale control of low-dimensional spin structures in manganites, Chinese Physics B, Volume 25 (2016) no. 6, p. 067504 | DOI:10.1088/1674-1056/25/6/067504
- Effect of 20 | DOI:10.1016/j.jallcom.2016.06.140
- Temperature-Dependent Magnetic Response of Antiferromagnetic Doping in Cobalt Ferrite Nanostructures, Nanomaterials, Volume 6 (2016) no. 4, p. 73 | DOI:10.3390/nano6040073
- Tuning of Cr3+ ions doping on the magnetic and magnetocaloric properties of La0.5Sr0.5Mn1−Cr O3, Physica B: Condensed Matter, Volume 502 (2016), p. 39 | DOI:10.1016/j.physb.2016.08.037
- Influence of Al substitution on physical properties of Pr0.67Sr0.33Mn1−x Al x O3 manganites, Applied Physics A, Volume 120 (2015) no. 1, p. 247 | DOI:10.1007/s00339-015-9161-9
- Structure, electronic and magnetic properties of hexagonal boron nitride sheets doped by 5d transition metal atoms: First-principles calculations and molecular orbital analysis, Physica E: Low-dimensional Systems and Nanostructures, Volume 65 (2015), p. 24 | DOI:10.1016/j.physe.2014.08.007
- Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55Sr0.45MnO3 manganite, Solid State Communications, Volume 223 (2015), p. 6 | DOI:10.1016/j.ssc.2015.08.019
- Effect of Ni-doping on structural, magnetic and magnetocaloric properties of La 0.6 Pr 0.1 Ba 0.3 Mn 1− x Ni x O 3 nanocrystalline manganites synthesized by Pechini sol–gel method, Journal of Alloys and Compounds, Volume 615 (2014), p. 553 | DOI:10.1016/j.jallcom.2014.07.001
- Domain wall transformations and hopping in La0.7Sr0.3MnO3nanostructures imaged with high resolution x-ray magnetic microscopy, Journal of Physics: Condensed Matter, Volume 26 (2014) no. 45, p. 456003 | DOI:10.1088/0953-8984/26/45/456003
- CONTROL SPIN CURRENT AND DATA RECORDING ON SPIN STORAGE MEDIUM, SPIN, Volume 04 (2014) no. 03, p. 1450006 | DOI:10.1142/s2010324714500064
- STABLE STRUCTURES, ELECTRIC AND MAGNETIC PROPERTIES OF NANOPARTICLES COn(n = 1-6) CLUSTERS: FIRST-PRINCIPLES CALCULATIONS, International Journal of Modern Physics B, Volume 27 (2013) no. 15, p. 1362007 | DOI:10.1142/s0217979213620075
- Optoelectronics, Nanoparticle Technologies - From Lab to Market, Volume 19 (2013), p. 429 | DOI:10.1016/b978-0-12-369550-5.00007-0
- Change of Magnetic Characteristics of Magnetic Nanofilms and Control of a Spin Current by means of a Laser Radiation, Uspehi Fiziki Metallov, Volume 14 (2013) no. 1, p. 1 | DOI:10.15407/ufm.14.01.001
- Epitaxial strain-induced changes in the cation distribution and resistivity of Fe-doped CoFe2O4, Applied Physics Letters, Volume 101 (2012) no. 2 | DOI:10.1063/1.4735233
- First-principles study on the magnetic properties of six potential half-metallic ferromagnets: Alkaline-earth (Ca, Sr) doped XC (X=Si, Ge, Sn), Computational Materials Science, Volume 65 (2012), p. 1 | DOI:10.1016/j.commatsci.2012.06.016
- Enhanced magnetic moment in ultrathin Fe-doped CoFe2O4films, Physical Review B, Volume 86 (2012) no. 17 | DOI:10.1103/physrevb.86.174404
- Oxidische Nanomaterialien: Von der Synthese über den Mechanismus zur technologischen Innovation, Angewandte Chemie, Volume 123 (2011) no. 4, p. 852 | DOI:10.1002/ange.201000235
- Oxide Nanomaterials: Synthetic Developments, Mechanistic Studies, and Technological Innovations, Angewandte Chemie International Edition, Volume 50 (2011) no. 4, p. 826 | DOI:10.1002/anie.201000235
- Control of spin configuration in half-metallic La0.7Sr0.3MnO3 nano-structures, Applied Physics Letters, Volume 99 (2011) no. 6 | DOI:10.1063/1.3623480
- Magnetic properties of several potential rocksalt half-metallic ferromagnets based on the first-principles calculations, Chinese Physics B, Volume 20 (2011) no. 7, p. 077101 | DOI:10.1088/1674-1056/20/7/077101
- Energy contributions in magnetite nanoparticles: computation of magnetic phase diagram, theory, and simulation, Journal of Nanoparticle Research, Volume 13 (2011) no. 12, p. 7115 | DOI:10.1007/s11051-011-0629-z
- Magnetic structure of Fe-doped CoFe2O4probed by x-ray magnetic spectroscopies, Physical Review B, Volume 84 (2011) no. 5 | DOI:10.1103/physrevb.84.054447
- Magnetic and electric properties of transition-metal doped wurtzite CdSe from first-principles calculations, Chinese Physics B, Volume 19 (2010) no. 3, p. 037103 | DOI:10.1088/1674-1056/19/3/037103
- First-principles research on influence of C dopants on magnetic and electric properties of rocksalt MgS, Chinese Physics B, Volume 19 (2010) no. 8, p. 087101 | DOI:10.1088/1674-1056/19/8/087101
- Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films, Materials Science and Engineering: R: Reports, Volume 68 (2010) no. 4-6, p. 89 | DOI:10.1016/j.mser.2010.03.001
- High field linear magnetoresistance in fully spin-polarized high-temperature organic-based ferrimagnetic semiconductor V(TCNE)x films, x 2, Synthetic Metals, Volume 160 (2010) no. 3-4, p. 307 | DOI:10.1016/j.synthmet.2009.09.025
- Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films, Applied Physics Letters, Volume 95 (2009) no. 11 | DOI:10.1063/1.3213346
- First-principle study on the magnetic properties of six potential half-metallic ferromagnets: C-doped alkaline-earth chalcogenides, Applied Physics Letters, Volume 95 (2009) no. 13 | DOI:10.1063/1.3242013
- Effect of K doping on the physical properties of La0.65Ca0.35−xKxMnO3 (0⩽x⩽0.2) perovskite manganites, Journal of Physics and Chemistry of Solids, Volume 70 (2009) no. 2, p. 326 | DOI:10.1016/j.jpcs.2008.10.028
- Growth of the magnetic semiconductor Fe2−x Ti x O3±δ thin films by pulsed laser deposition, Applied Physics A, Volume 93 (2008) no. 3, p. 669 | DOI:10.1007/s00339-008-4693-x
- Correlation between the synthesis conditions and the compositional and magnetic properties of Co2(Cr1−xFex)Al Heusler alloys, Journal of Alloys and Compounds, Volume 450 (2008) no. 1-2, p. 31 | DOI:10.1016/j.jallcom.2006.10.104
- Electronic and magnetic properties of basic nanosystems of early 3d transition metals (Sc, Ti, V, Cr, and Mn), Journal of Magnetism and Magnetic Materials, Volume 320 (2008) no. 18, p. 2201 | DOI:10.1016/j.jmmm.2008.03.049
- Raman spectroscopy of La2NiMnO6 films on SrTiO3 (100) and LaAlO3 (100) substrates: Observation of epitaxial strain, Vibrational Spectroscopy, Volume 48 (2008) no. 1, p. 113 | DOI:10.1016/j.vibspec.2007.12.001
- Effect of cation disorder on the magnetic properties ofSr2Fe1−xGaxReO6(0
, Physical Review B, Volume 75 (2007) no. 18 | DOI:10.1103/physrevb.75.184409 - Dilute magnetic semiconductors based on InN, Phase Transitions, Volume 79 (2006) no. 9-10, p. 785 | DOI:10.1080/01411590601124796
- Inorganic Spintronic Materials, Encyclopedia of Inorganic and Bioinorganic Chemistry (2004), p. 1 | DOI:10.1002/9781119951438.eibc2159
Cité par 74 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier