[Quelques aspects de la gravité newtonienne en dimension d]
J'étudie l'influence de la dimension de l'espace sur la thermodynamique du gaz auto-gravitant classique et quantique. Je considère des systèmes hamiltoniens de particules auto-gravitantes décrits par l'ensemble microcanonique et des systèmes de particules browniennes auto-gravitantes décrits par l'ensemble canonique. Je présente une galerie de courbes caloriques pour différentes dimensions de l'espace et discute la nature des transitions de phase en fonction de la dimension d. Je fournis aussi la forme générale du théorème du Viriel en d dimensions et discute la particularité de la dimension
We study the influence of the dimension of space on the thermodynamics of the classical and quantum self-gravitating gas. We consider Hamiltonian systems of self-gravitating particles described by the microcanonical ensemble and self-gravitating Brownian particles described by the canonical ensemble. We present a gallery of caloric curves in different dimensions of space and discuss the nature of phase transitions as a function of the dimension d. We also provide the general form of the Virial theorem in d dimensions and discuss the particularity of the dimension
Mots-clés : Gravité newtonienne, Gaz auto-gravitant, Systèmes browniens
Pierre-Henri Chavanis 1
@article{CRPHYS_2006__7_3-4_331_0, author = {Pierre-Henri Chavanis}, title = {Newtonian gravity in \protect\emph{d} dimensions}, journal = {Comptes Rendus. Physique}, pages = {331--342}, publisher = {Elsevier}, volume = {7}, number = {3-4}, year = {2006}, doi = {10.1016/j.crhy.2006.01.005}, language = {en}, }
Pierre-Henri Chavanis. Newtonian gravity in d dimensions. Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 331-342. doi : 10.1016/j.crhy.2006.01.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.01.005/
[1] Phys. Rep., 188 (1990), p. 285
[2] Statistical mechanics of two-dimensional vortices and stellar systems (T. Dauxois; S. Ruffo; E. Arimondo; M. Wilkens, eds.), Dynamics and Thermodynamics of Systems with Long Range Interactions, Lecture Notes in Phys., Springer-Verlag, Berlin/New York, 2002 | arXiv
[3] Microcanonical Thermodynamics: Phase transitions in Small Systems, Lecture Notes in Phys., vol. 66, World Scientific, Singapore, 2001
[4] Nature, 383 (1996), p. 56
[5] Phys. Rev. E, 65 (2002), p. 056123
[6] Phys. Rev. E, 66 (2002), p. 046133
[7] Phys. Rev. E, 69 (2004), p. 6126
[8] Physica A, 361 (2006), p. 55
[9] Phys. Rev. E, 66 (2002), p. 036105
[10] Phys. Rev. E, 72 (2005), p. 026105
[11] Mon. Not. R. Astron. Soc., 136 (1967), p. 101
[12] arXiv
|[13] Mon. Not. R. Astron. Soc., 184 (1978), p. 709
[14] Phys. Rev. E, 69 (2004), p. 016116
[15] arXiv
|[16] Mon. Not. R. Astron. Soc., 183 (1978), p. 765
[17] A&A, 381 (2002), p. 340
[18] A&A, 401 (2003), p. 15
[19] Mon. Not. R. Astron. Soc., 110 (1950), p. 305
[20] Phys. Rev. E, 60 (1999), p. 5185
[21] A&A, 432 (2005), p. 117
[22] Mon. Not. R. Astron. Soc., 138 (1968), p. 495
[23] J. Binney, S. Tremaine, Galactic Dynamics, Princeton Series in Astrophysics, 1987
[24] Phys. Rev. E, 69 (2004), p. 066109
[25] A&A, 412 (2003), p. 1
[26] Banach Center Publ., 66 (2004), p. 103
[27] Proc. Amst. Acad., 20 (1917), p. 200
[28] P.-H. Chavanis, submitted for publication
- Phase transitions in self-gravitating systems and bacterial populations surrounding a central body, Physical Review E, Volume 109 (2024) no. 1 | DOI:10.1103/physreve.109.014118
- Boltzmann-Poisson equation with a central body: Analytical solutions in one and two dimensions, Physical Review E, Volume 110 (2024) no. 6 | DOI:10.1103/physreve.110.064117
- Self-gravitating clusters of Bose-Einstein gas with planar, cylindrical, or spherical symmetry: Gaseous density profiles and onset of condensation, Physical Review E, Volume 105 (2022) no. 3 | DOI:10.1103/physreve.105.034145
- Self-gravitating clusters of Fermi-Dirac gas with planar, cylindrical, or spherical symmetry: Evolution of density profiles with temperature, Physical Review E, Volume 106 (2022) no. 2 | DOI:10.1103/physreve.106.024132
- Dynamical origin of non-thermal states in galactic filaments, Monthly Notices of the Royal Astronomical Society, Volume 475 (2018) no. 1, p. 1137 | DOI:10.1093/mnras/stx3244
- Dissipative self-gravitating Bose-Einstein condensates with arbitrary nonlinearity as a model of dark matter halos, The European Physical Journal Plus, Volume 132 (2017) no. 6 | DOI:10.1140/epjp/i2017-11544-3
- Gravitational phase transitions with an exclusion constraint in position space, The European Physical Journal B, Volume 87 (2014) no. 1 | DOI:10.1140/epjb/e2013-40833-4
- Collisional relaxation of two-dimensional self-gravitating systems, Physical Review E, Volume 88 (2013) no. 3 | DOI:10.1103/physreve.88.032112
- Kinetic theory of spatially homogeneous systems with long-range interactions: III. Application to power law potentials, plasmas, stellar systems, and to the HMF model, The European Physical Journal Plus, Volume 128 (2013) no. 10 | DOI:10.1140/epjp/i2013-13128-7
- VIRIAL THEOREM FOR ROTATING SELF-GRAVITATING BROWNIAN PARTICLES AND TWO-DIMENSIONAL POINT VORTICES, International Journal of Modern Physics B, Volume 26 (2012) no. 12, p. 1241002 | DOI:10.1142/s0217979212410020
- Virial theorem for Onsager vortices in two-dimensional hydrodynamics, The European Physical Journal Plus, Volume 127 (2012) no. 12 | DOI:10.1140/epjp/i2012-12159-x
- Self-gravitating Brownian particles in two dimensions: the case of N = 2 particles, The European Physical Journal B, Volume 78 (2010) no. 2, p. 139 | DOI:10.1140/epjb/e2010-90839-3
- Relativistic stars with a linear equation of state: analogy with classical isothermal spheres and black holes, Astronomy Astrophysics, Volume 483 (2008) no. 3, p. 673 | DOI:10.1051/0004-6361:20078287
- White dwarf stars inDdimensions, Physical Review D, Volume 76 (2007) no. 2 | DOI:10.1103/physrevd.76.023004
- Exact diffusion coefficient of self-gravitating Brownian particles in two dimensions, The European Physical Journal B, Volume 57 (2007) no. 4, p. 391 | DOI:10.1140/epjb/e2007-00187-2
- PHASE TRANSITIONS IN SELF-GRAVITATING SYSTEMS, International Journal of Modern Physics B, Volume 20 (2006) no. 22, p. 3113 | DOI:10.1142/s0217979206035400
Cité par 16 documents. Sources : Crossref
Commentaires - Politique