[Mécanique statistique du gaz auto-gravitant : limite thermodynamique, instabilités et diagrammes de phase]
We show that the self-gravitating gas at thermal equilibrium has an infinite volume limit in the three ensembles (GCE, CE, MCE) when
Nous montrons que la limite de volume infini existe pour le gaz auto-gravitant à l'equilibre thermique dans les trois ensembles (EGC, EC, EMC) quand
Mots-clés : Gaz auto-gravitant, Champ moyen, Effondrement gravitationnel
Hector J. de Vega 1, 2 ; Norma G. Sanchez 2
@article{CRPHYS_2006__7_3-4_391_0, author = {Hector J. de Vega and Norma G. Sanchez}, title = {Statistical mechanics of the self-gravitating gas: {Thermodynamic} limit, instabilities and phase diagrams}, journal = {Comptes Rendus. Physique}, pages = {391--397}, publisher = {Elsevier}, volume = {7}, number = {3-4}, year = {2006}, doi = {10.1016/j.crhy.2006.01.006}, language = {en}, }
TY - JOUR AU - Hector J. de Vega AU - Norma G. Sanchez TI - Statistical mechanics of the self-gravitating gas: Thermodynamic limit, instabilities and phase diagrams JO - Comptes Rendus. Physique PY - 2006 SP - 391 EP - 397 VL - 7 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2006.01.006 LA - en ID - CRPHYS_2006__7_3-4_391_0 ER -
%0 Journal Article %A Hector J. de Vega %A Norma G. Sanchez %T Statistical mechanics of the self-gravitating gas: Thermodynamic limit, instabilities and phase diagrams %J Comptes Rendus. Physique %D 2006 %P 391-397 %V 7 %N 3-4 %I Elsevier %R 10.1016/j.crhy.2006.01.006 %G en %F CRPHYS_2006__7_3-4_391_0
Hector J. de Vega; Norma G. Sanchez. Statistical mechanics of the self-gravitating gas: Thermodynamic limit, instabilities and phase diagrams. Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 391-397. doi : 10.1016/j.crhy.2006.01.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.01.006/
[1] Physique statistique, Mir–Ellipses, 1996
[2] Astrophys. J., 383 (1996), p. 56
[3] Statistical mechanics of the self-gravitating gas and fractal structures. I, Nucl. Phys. B, Volume 625 (2002), p. 409
[4] Statistical mechanics of the self-gravitating gas and fractal structures. II, Nucl. Phys. B, Volume 625 (2002), p. 460
[5] Phys. Rev. E, 66 (2002), p. 016112
[6] Statistical mechanics of the self-gravitating gas: thermodynamic limit, phase diagrams and fractal structures, Palermo, Italy, 7–18 September 2002 (N. Sánchez; Yu. Parijskij, eds.) (NATO ASI), Kluwer (2002), pp. 291-324 | arXiv
[7] J. Binney, S. Tremaine, Galactic Dynamics, Princeton Univ. Press
[8] Mon. Not. R. Astron. Soc., 138 (1968), p. 495
[9] Nucl. Phys. B, 707 (2005), p. 529
[10] Nucl. Phys. B, 711 (2005), p. 604
- Density profiles of a self-gravitating lattice gas in one, two, and three dimensions, Physical Review E, Volume 97 (2018) no. 4 | DOI:10.1103/physreve.97.042131
- SEMICLASSICAL AND QUANTUM BLACK HOLES AND THEIR EVAPORATION, DE SITTER AND ANTI-DE SITTER REGIMES, GRAVITATIONAL AND STRING PHASE TRANSITIONS, International Journal of Modern Physics A, Volume 22 (2007) no. 32, p. 6089 | DOI:10.1142/s0217751x07038669
Cité par 2 documents. Sources : Crossref
Commentaires - Politique