[Mécanique statistique du gaz auto-gravitant : limite thermodynamique, instabilités et diagrammes de phase]
Nous montrons que la limite de volume infini existe pour le gaz auto-gravitant à l'equilibre thermique dans les trois ensembles (EGC, EC, EMC) quand
We show that the self-gravitating gas at thermal equilibrium has an infinite volume limit in the three ensembles (GCE, CE, MCE) when
Mots-clés : Gaz auto-gravitant, Champ moyen, Effondrement gravitationnel
Hector J. de Vega 1, 2 ; Norma G. Sanchez 2
@article{CRPHYS_2006__7_3-4_391_0, author = {Hector J. de Vega and Norma G. Sanchez}, title = {Statistical mechanics of the self-gravitating gas: {Thermodynamic} limit, instabilities and phase diagrams}, journal = {Comptes Rendus. Physique}, pages = {391--397}, publisher = {Elsevier}, volume = {7}, number = {3-4}, year = {2006}, doi = {10.1016/j.crhy.2006.01.006}, language = {en}, }
TY - JOUR AU - Hector J. de Vega AU - Norma G. Sanchez TI - Statistical mechanics of the self-gravitating gas: Thermodynamic limit, instabilities and phase diagrams JO - Comptes Rendus. Physique PY - 2006 SP - 391 EP - 397 VL - 7 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2006.01.006 LA - en ID - CRPHYS_2006__7_3-4_391_0 ER -
%0 Journal Article %A Hector J. de Vega %A Norma G. Sanchez %T Statistical mechanics of the self-gravitating gas: Thermodynamic limit, instabilities and phase diagrams %J Comptes Rendus. Physique %D 2006 %P 391-397 %V 7 %N 3-4 %I Elsevier %R 10.1016/j.crhy.2006.01.006 %G en %F CRPHYS_2006__7_3-4_391_0
Hector J. de Vega; Norma G. Sanchez. Statistical mechanics of the self-gravitating gas: Thermodynamic limit, instabilities and phase diagrams. Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 391-397. doi : 10.1016/j.crhy.2006.01.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.01.006/
[1] Physique statistique, Mir–Ellipses, 1996
[2] Astrophys. J., 383 (1996), p. 56
[3] Statistical mechanics of the self-gravitating gas and fractal structures. I, Nucl. Phys. B, Volume 625 (2002), p. 409
[4] Statistical mechanics of the self-gravitating gas and fractal structures. II, Nucl. Phys. B, Volume 625 (2002), p. 460
[5] Phys. Rev. E, 66 (2002), p. 016112
[6] Statistical mechanics of the self-gravitating gas: thermodynamic limit, phase diagrams and fractal structures, Palermo, Italy, 7–18 September 2002 (N. Sánchez; Yu. Parijskij, eds.) (NATO ASI), Kluwer (2002), pp. 291-324 | arXiv
[7] J. Binney, S. Tremaine, Galactic Dynamics, Princeton Univ. Press
[8] Mon. Not. R. Astron. Soc., 138 (1968), p. 495
[9] Nucl. Phys. B, 707 (2005), p. 529
[10] Nucl. Phys. B, 711 (2005), p. 604
- Density profiles of a self-gravitating lattice gas in one, two, and three dimensions, Physical Review E, Volume 97 (2018) no. 4 | DOI:10.1103/physreve.97.042131
- SEMICLASSICAL AND QUANTUM BLACK HOLES AND THEIR EVAPORATION, DE SITTER AND ANTI-DE SITTER REGIMES, GRAVITATIONAL AND STRING PHASE TRANSITIONS, International Journal of Modern Physics A, Volume 22 (2007) no. 32, p. 6089 | DOI:10.1142/s0217751x07038669
Cité par 2 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier