Comptes Rendus
Mean field theory and general relativistic black holes
Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 343-349.

We review the basics of a newly developed mean field theory of relativistic gravitation. A particularly simple coarse graining of the Schwarzschild space–time is presented as an example. We then use this example to discuss current and near future observations of SgrA.

Nous rappelons les bases d'une théorie champ moyen récemment développée pour la gravitation relativiste. Un lissage particulièrement simple de l'espace–temps de Schwarzschild est proposé en tant qu'exemple. Nous utilisons ensuite cet exemple pour discuter des observations actuelles et futures de SgrA.

Published online:
DOI: 10.1016/j.crhy.2006.02.004
Keywords: Classical general relativity, Classical black holes, Classical statistical mechanics
Mots-clés : Relativité générale classique, Trous noirs classiques, Mécanique statistique classique

C. Chevalier 1; F. Debbasch 1

1 ERGA-LERMA, université Paris VI, UMR 8112, 3, rue Galilée, 94200 Ivry, France
@article{CRPHYS_2006__7_3-4_343_0,
     author = {C. Chevalier and F. Debbasch},
     title = {Mean field theory and general relativistic black holes},
     journal = {Comptes Rendus. Physique},
     pages = {343--349},
     publisher = {Elsevier},
     volume = {7},
     number = {3-4},
     year = {2006},
     doi = {10.1016/j.crhy.2006.02.004},
     language = {en},
}
TY  - JOUR
AU  - C. Chevalier
AU  - F. Debbasch
TI  - Mean field theory and general relativistic black holes
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 343
EP  - 349
VL  - 7
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.02.004
LA  - en
ID  - CRPHYS_2006__7_3-4_343_0
ER  - 
%0 Journal Article
%A C. Chevalier
%A F. Debbasch
%T Mean field theory and general relativistic black holes
%J Comptes Rendus. Physique
%D 2006
%P 343-349
%V 7
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2006.02.004
%G en
%F CRPHYS_2006__7_3-4_343_0
C. Chevalier; F. Debbasch. Mean field theory and general relativistic black holes. Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 343-349. doi : 10.1016/j.crhy.2006.02.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.02.004/

[1] T. Futamase Prog. Theor. Phys., 86 (1991), pp. 389-399

[2] T. Futamase Prog. Theor. Phys., 89 (1993), pp. 581-597

[3] T. Futamase Averaging of a locally inhomogeneous realistic universe, Phys. Rev. D, Volume 53 (1996), pp. 681-689

[4] M. Kasai Construction of inhomogeneous universes which are Friedmann–Lemaitre–Robertson–Walker on average, Phys. Rev. D, Volume 69 (1992), pp. 2330-2332

[5] R. Zalaletdinov Averaging problem in general relativity, macroscopic gravity and using Einstein's equation in cosmology, Bull. Astron. Soc. India, Volume 25 (1997), pp. 401-416

[6] T. Buchert On average properties of inhomogeneous fluids in general relativity: dust cosmologies, Gen. Rel. Grav., Volume 32 (2000), pp. 105-126

[7] T. Buchert On average properties of inhomogeneous fluids in general relativity: perfect fluid cosmologies, Gen. Rel. Grav., Volume 33 (2001), pp. 1381-1405

[8] G.F.R. Ellis; H. van Elst Cosmological models, in: Cargese lecture, 1998 | arXiv

[9] F. Debbasch What is a mean gravitational field?, Eur. Phys. J. B, Volume 37 (2004) no. 2, pp. 257-270

[10] F. Debbasch Mean field theory and geodesics in general relativity, Eur. Phys. J. B, Volume 43 (2005) no. 1, pp. 143-154

[11] R.M. Wald General Relativity, The University of Chicago Press, Chicago, 1984

[12] F. Debbasch; Y. Ollivier Observing a Schwarzschild black hole with finite precision, Astron. Astrophys., Volume 433 (2005) no. 2, pp. 397-404

[13] E.W. Kolb; S. Matarese; A. Riotto On cosmic acceleration without dark energy | arXiv

[14] A. Ishibashi; R.M. Wald Can the acceleration of our Universe be explained by the effects of inhomogeneities? | arXiv

[15] D.N. Spergel et al. First Year Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters, Astrophys. J. Suppl., Volume 148 (2003), p. 175

[16] P.J.E. Peebles, Princeton Series in Physics, Princeton Univ. Press, Princeton, 1993

[17] R. Schödel et al. Astrophys. J., 597 (2003) no. 2, p. L121-L124

[18] R. Schödel et al. Astrophys. J., 596 (2003) no. 2, pp. 1015-1034

[19] A.M. Ghez et al. Astron. Nachr. Suppl., 324 (2003) no. 1, pp. 527-533

[20] A.M. Ghez et al. Astrophys. J., 586 (2003) no. 2, p. L127-L131

[21] G. Bower Science, 304 (2004), pp. 704-708

[22] S. Doeleman; G. Bower GCNews, 18 (2004), pp. 6-12

[23] M. Miyoshi, An approach detecting the horizon of SgrA, in: Proceedings of the 7th European VLBI Network Symposium, Toledo, 2004

Cited by Sources:

Comments - Policy