We review the basics of a newly developed mean field theory of relativistic gravitation. A particularly simple coarse graining of the Schwarzschild space–time is presented as an example. We then use this example to discuss current and near future observations of .
Nous rappelons les bases d'une théorie champ moyen récemment développée pour la gravitation relativiste. Un lissage particulièrement simple de l'espace–temps de Schwarzschild est proposé en tant qu'exemple. Nous utilisons ensuite cet exemple pour discuter des observations actuelles et futures de .
Mots-clés : Relativité générale classique, Trous noirs classiques, Mécanique statistique classique
C. Chevalier 1; F. Debbasch 1
@article{CRPHYS_2006__7_3-4_343_0, author = {C. Chevalier and F. Debbasch}, title = {Mean field theory and general relativistic black holes}, journal = {Comptes Rendus. Physique}, pages = {343--349}, publisher = {Elsevier}, volume = {7}, number = {3-4}, year = {2006}, doi = {10.1016/j.crhy.2006.02.004}, language = {en}, }
C. Chevalier; F. Debbasch. Mean field theory and general relativistic black holes. Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 343-349. doi : 10.1016/j.crhy.2006.02.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.02.004/
[1] Prog. Theor. Phys., 86 (1991), pp. 389-399
[2] Prog. Theor. Phys., 89 (1993), pp. 581-597
[3] Averaging of a locally inhomogeneous realistic universe, Phys. Rev. D, Volume 53 (1996), pp. 681-689
[4] Construction of inhomogeneous universes which are Friedmann–Lemaitre–Robertson–Walker on average, Phys. Rev. D, Volume 69 (1992), pp. 2330-2332
[5] Averaging problem in general relativity, macroscopic gravity and using Einstein's equation in cosmology, Bull. Astron. Soc. India, Volume 25 (1997), pp. 401-416
[6] On average properties of inhomogeneous fluids in general relativity: dust cosmologies, Gen. Rel. Grav., Volume 32 (2000), pp. 105-126
[7] On average properties of inhomogeneous fluids in general relativity: perfect fluid cosmologies, Gen. Rel. Grav., Volume 33 (2001), pp. 1381-1405
[8] Cosmological models, in: Cargese lecture, 1998 | arXiv
[9] What is a mean gravitational field?, Eur. Phys. J. B, Volume 37 (2004) no. 2, pp. 257-270
[10] Mean field theory and geodesics in general relativity, Eur. Phys. J. B, Volume 43 (2005) no. 1, pp. 143-154
[11] General Relativity, The University of Chicago Press, Chicago, 1984
[12] Observing a Schwarzschild black hole with finite precision, Astron. Astrophys., Volume 433 (2005) no. 2, pp. 397-404
[13] On cosmic acceleration without dark energy | arXiv
[14] Can the acceleration of our Universe be explained by the effects of inhomogeneities? | arXiv
[15] et al. First Year Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters, Astrophys. J. Suppl., Volume 148 (2003), p. 175
[16] , Princeton Series in Physics, Princeton Univ. Press, Princeton, 1993
[17] et al. Astrophys. J., 597 (2003) no. 2, p. L121-L124
[18] et al. Astrophys. J., 596 (2003) no. 2, pp. 1015-1034
[19] et al. Astron. Nachr. Suppl., 324 (2003) no. 1, pp. 527-533
[20] et al. Astrophys. J., 586 (2003) no. 2, p. L127-L131
[21] Science, 304 (2004), pp. 704-708
[22] GCNews, 18 (2004), pp. 6-12
[23] M. Miyoshi, An approach detecting the horizon of , in: Proceedings of the 7th European VLBI Network Symposium, Toledo, 2004
Cited by Sources:
Comments - Policy