Comptes Rendus
Direct write lithography: the global solution for R&D and manufacturing
[La lithographie par écriture directe : solution globale pour la R&D et la production]
Comptes Rendus. Physique, Ultimate lithography, Volume 7 (2006) no. 8, pp. 910-923.

La lithographie par faisceau d'électrons est une solution technologique bien connue, mature et très utilisée dans les laboratoires de recherche et universités qui permet de réaliser des structures avancées pour des programmes de recherche et développement, couvrant un large champ d'applications. Cependant, du fait de sa lenteur d'écriture, la lithographie à écriture directe n'est jamais apparue comme une solution crédible pour la production. Néanmoins, l'accroissement des coûts de la lithographie optique liés à l'utilisation de masques et de systèmes d'exposition de plus en plus complexes, commence à toucher le marché des semi-conducteurs. Cette tendance ouvre des perspectives pour des machines de lithographie sans masque à fort débit pour la production de circuits spécifiques (ASIC). Une revue de la lithographie sans masque (ML2) est présentée dans cette publication, incluant la capacité d'intégration de cette solution, ses domaines d'application ainsi que les perspectives concernant des solutions ML2 à fort débit.

The electron beam lithography is a well known and mature solution, widely installed in research laboratories and Universities, to provide advanced patterning for research and development programs for a large field of applications. However, limited by its low throughput capabilities, the direct write solution never appeared as a credible option for manufacturing purposes. Nevertheless, semiconductor business starts to be affected by the increasing cost of the optical lithography requesting more and more complex masks and projection systems. This trend opens opportunities for high throughput mask less equipments to address ASIC manufacturing. A review of the Maskless Lithography (ML2) technology is presented in this article, including process integration capability, application fields and perspective for high throughput ML2 solution.

Publié le :
DOI : 10.1016/j.crhy.2006.10.003
Keywords: Lithography, E-beam, Direct write, Prototyping
Mots-clés : Lithographie, Faisceau d'electron, Écriture directe, Prototypage

Laurent Pain 1 ; Serge Tedesco 1 ; Christophe Constancias 1

1 CEA–LETI, Minatec, 17, rue des martyrs, 38054 Grenoble cedex 09, France
@article{CRPHYS_2006__7_8_910_0,
     author = {Laurent Pain and Serge Tedesco and Christophe Constancias},
     title = {Direct write lithography: the global solution for {R&D} and manufacturing},
     journal = {Comptes Rendus. Physique},
     pages = {910--923},
     publisher = {Elsevier},
     volume = {7},
     number = {8},
     year = {2006},
     doi = {10.1016/j.crhy.2006.10.003},
     language = {en},
}
TY  - JOUR
AU  - Laurent Pain
AU  - Serge Tedesco
AU  - Christophe Constancias
TI  - Direct write lithography: the global solution for R&D and manufacturing
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 910
EP  - 923
VL  - 7
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.10.003
LA  - en
ID  - CRPHYS_2006__7_8_910_0
ER  - 
%0 Journal Article
%A Laurent Pain
%A Serge Tedesco
%A Christophe Constancias
%T Direct write lithography: the global solution for R&D and manufacturing
%J Comptes Rendus. Physique
%D 2006
%P 910-923
%V 7
%N 8
%I Elsevier
%R 10.1016/j.crhy.2006.10.003
%G en
%F CRPHYS_2006__7_8_910_0
Laurent Pain; Serge Tedesco; Christophe Constancias. Direct write lithography: the global solution for R&D and manufacturing. Comptes Rendus. Physique, Ultimate lithography, Volume 7 (2006) no. 8, pp. 910-923. doi : 10.1016/j.crhy.2006.10.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.003/

[1] R.F.M. Thornley; M. Hatzakis 9th Symp. Electron, Ion, and Laser Beam Technol., San Francisco Press, 1967, p. 94

[2] B. Arnold, Executive millennium report: 1999 roadmap: Solutions and caveats, Solid State Technology

[3] L. Pain, Europe SEMICON presentation, April 2006

[4] B.J. Lin Microelectron. Eng., 83 (2006), pp. 604-613

[5] W. Trybula Microelectron. Eng., 83 (2006), pp. 614-618

[6] L. Pain et al. Jpn. J. Appl. Phys., 43 (2004) no. 6B, pp. 3755-3761

[7] W. Chen; H. Ahmed Appl. Phys. Lett., 62 (1993) no. 13

[8] H. Namatsu; T. Yamaguchi; M. Nagase; K. Yamasaki; K. Kurihara Microelectron. Eng., 41/42 (1998), pp. 331-334

[9] B.E. Maile et al. Jpn. J. Appl. Phys., 39 (2000), pp. 6836-6842

[10] L. Mollard; G. Cunge; S. Tedesco; B. Dal'zotto; J. Foucher Microelectron. Eng., 61/62 (2002), p. 755

[11] J. Fujita; Y. Ohnishi; Y. Ochiai; S. Matsui Appl. Phys. Lett., 68 ( 26 February 1996 ) no. 9

[12] A.P. G Robinson et al. Microelectron. Eng., 83 (2006), pp. 1115-1118

[13] J. Todeschini et al. Proc. SPIE, 5753 (2005), p. 408

[14] S. Landis et al. Jpn. J. Appl. Phys., 43 (2004), p. 3974

[15] B. Icard, et al., paper presented at EIPBN conference, 2006, in press

[16] H. Satoh et al. Proc. SPIE, 3096 (1997), pp. 72-83

[17] PROXECCO 3.4 Documentation Copyright ©2001 by PDF solutions GmbH, aiss Division

[18] S. Manakli, et al., paper presented at MNC conference, 2005, in press

[19] S. Deleonibus et al. IEEE Electron Dev. Lett., 4 (2000), pp. 173-175

[20] S. Tedesco et al. J. Vac. Sci. Technol. B, 16 ( November/December 1998 ) no. 6

[21] S. Steen Proc. SPIE, 5751 (2005), pp. 26-34

[22] L. Pain et al. Proc. SPIE, 5751 (2005), pp. 35-45

[23] F. Arnaud, in: Symposium on VLSI Technol., 2004, pp. 10–11

[24] F. Boeuf, et al., in: Symposium on VLSI Technol., 2005, pp. 130–131

[25] Yamada et al. J. Vac. Sci. Technol. B, 21 (2003) no. 6, pp. 2680-2685

[26] R. Inamani Proc. SPIE, 5037 (2003), pp. 1043-1050

[27] T. Nakasugi Proc. SPIE, 5037 (2003), pp. 1051-1058

[28] Yamada, in: ISMT CPL Workshop, Vienna, 23rd September 2005

[29] B. Van Kampherbeck, in: ISMT Vancouver Workshop, May 2006

[30] H. Döring et al. Proc. SPIE, 5751 (2005), p. 355

[31] T. Sandstrom et al. Proc. SPIE, 4562 (2002), p. 38

[32] J. Beauvais et al. Proc. SPIE, 5751 (2005), pp. 518-526

  • Hongxin Xu; Hailong Han; You Xiao; Jiamin Xiong; Chaomeng Ding; Zhiyun Shu; Yuchi Li; Xiaoyu Liu; Lixing You; Zhen Wang; Hao Li Impact of distributed Bragg reflectors on the intrinsic detection efficiency of superconducting nanowire single-photon detectors, Superconductivity, Volume 13 (2025), p. 100152 | DOI:10.1016/j.supcon.2025.100152
  • Hannah J. Askew; Karyn L. Jarvis; Robert T. Jones; Sally L. McArthur Electron Beam Lithography Nanopatterning of Plasma Polymers, Macromolecular Chemistry and Physics, Volume 222 (2021) no. 12 | DOI:10.1002/macp.202100026
  • Moataz Eissa; Takuya Mitarai; Tomohiro Amemiya; Yasuyuki Miyamoto; Nobuhiko Nishiyama Fabrication of Si photonic waveguides by electron beam lithography using improved proximity effect correction, Japanese Journal of Applied Physics, Volume 59 (2020) no. 12, p. 126502 | DOI:10.35848/1347-4065/abc78d
  • N. Mojarad; M. Hojeij; L. Wang; J. Gobrecht; Y. Ekinci Single-digit-resolution nanopatterning with extreme ultraviolet light for the 2.5 nm technology node and beyond, Nanoscale, Volume 7 (2015) no. 9, p. 4031 | DOI:10.1039/c4nr07420c
  • Douglas J. Resnick; Christopher Bencher; Yoshihiro Midoh; Atsushi Osaki; Koji Nakamae, Alternative Lithographic Technologies VI, Volume 9049 (2014), p. 90491Z | DOI:10.1117/12.2046336
  • Florian Delachat; Christophe Constancias; Jérôme Reche; Bernard Dal'Zotto; Laurent Pain; Boris Le Drogoff; Mohamed Chaker; Joëlle Margot Determination of spot size and acid diffusion length in positive chemically amplified resist for e-beam lithography at 100 and 5 kV, Journal of Vacuum Science Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Volume 32 (2014) no. 6 | DOI:10.1116/1.4900730
  • Marie-Line Pourteau; Armel-Petit Mebiene-Engohang; Jean-Christophe Marusic; Laurent Pain; Sylvain David; Marc Smits; Marco Wieland Carbonaceous contamination growth induced by resist outgassing under e-beam exposure, Journal of Vacuum Science Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Volume 32 (2014) no. 6 | DOI:10.1116/1.4901415
  • Andrzej Sierakowski; Daniel Kopiec; Paweł Janus; Magdalena Ekwińska; Mariusz Płuska; Piotr Grabiec; Teodor Gotszalk Piezoresistive cantilever working in a shear force mode forin situcharacterization of exposed micro- and nanostructures, Measurement Science and Technology, Volume 25 (2014) no. 4, p. 044018 | DOI:10.1088/0957-0233/25/4/044018
  • A. Hemamouche; A. Morin; E. Bourhis; B. Toury; E. Tarnaud; J. Mathé; P. Guégan; A. Madouri; X. Lafosse; C. Ulysse; S. Guilet; G. Patriarche; L. Auvray; F. Montel; Q. Wilmart; B. Plaçais; J. Yates; J. Gierak FIB patterning of dielectric, metallized and graphene membranes: A comparative study, Microelectronic Engineering, Volume 121 (2014), p. 87 | DOI:10.1016/j.mee.2014.03.020
  • Sung‐Il Lee; Jae Hwan Sim; Hae‐Jeong Lee; Richard Kasica; Hyun‐Mi Kim; Christopher L. Soles; Ki‐Bum Kim; Do Y. Yoon Organosilicate polymer e‐beam resists with high resolution, sensitivity and stability, Applied Organometallic Chemistry, Volume 27 (2013) no. 11, p. 644 | DOI:10.1002/aoc.2985
  • Roland Salut; Celine Gesset; Gilles Martin; Badreddine Assouar; Philippe Bergonzo; Rodolphe Boudot; Omar Elmazria; Sylvain Ballandras Fabrication of a 3GHz oscillator based on Nano-Carbon-Diamond-film-based guided wave resonators, Microelectronic Engineering, Volume 112 (2013), p. 133 | DOI:10.1016/j.mee.2013.03.096
  • Richard G. Hobbs; Nikolay Petkov; Justin D. Holmes Semiconductor Nanowire Fabrication by Bottom-Up and Top-Down Paradigms, Chemistry of Materials, Volume 24 (2012) no. 11, p. 1975 | DOI:10.1021/cm300570n
  • Min Sup Oh; Jae Hong Lee; Chinsoo Hong; Ho-Nyeon Lee; Chang Kyo Kim Development of Photolithography Process for Printed Circuit Board Using Liquid Crystal Mask in Place of Photomask, Japanese Journal of Applied Physics, Volume 51 (2012) no. 9S2, p. 09MF16 | DOI:10.7567/jjap.51.09mf16
  • Chun-Hung Liu New parametric point spread function calibration methodology for improving the accuracy of patterning prediction in electron-beam lithography, Journal of Micro/Nanolithography, MEMS, and MOEMS, Volume 11 (2012) no. 1, p. 013009 | DOI:10.1117/1.jmm.11.1.013009
  • M. Oubaha; R. Copperwhite; C. Boothman; A. Ovsianikov; R. Kiyan; V. Purlys; M. O’Sullivan; C. McDonagh; B. Chichkov; R. Gadonas; B. D. MacCraith Influence of hybrid organic–inorganic sol–gel matrices on the photophysics of amino-functionalized UV-sensitizers, Journal of Materials Science, Volume 46 (2011) no. 2, p. 400 | DOI:10.1007/s10853-010-4853-1
  • Rui M. D. Nunes Sculpting Nanometric Patterns: The Top‐down Approach, Ideas in Chemistry and Molecular Sciences (2010), p. 379 | DOI:10.1002/9783527630530.ch15
  • David Winter; Peter Virnau; Kurt Binder Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory, Journal of Physics: Condensed Matter, Volume 21 (2009) no. 46, p. 464118 | DOI:10.1088/0953-8984/21/46/464118
  • Stephen Y Chou; Wen-Di Li; Xiaogan Liang Quantized patterning using nanoimprinted blanks, Nanotechnology, Volume 20 (2009) no. 15, p. 155303 | DOI:10.1088/0957-4484/20/15/155303
  • Yvonne H. Lanyon; Damien W. M. Arrigan Top‐Down Approaches to the Fabrication of Nanopatterned Electrodes, Nanostructured Materials in Electrochemistry (2008), p. 187 | DOI:10.1002/9783527621507.ch3

Cité par 19 documents. Sources : Crossref

Commentaires - Politique