Comptes Rendus
Optical lithography—a historical perspective
[Lithographie optique—une vue historique]
Comptes Rendus. Physique, Volume 7 (2006) no. 8, pp. 844-857.

La lithographie optique (aussi appelée photolithographie) a été le facteur clé pour réduire les tailles de motifs des circuits intégrés, ce qui a permis une croissance exponentielle de l'industrie du semiconducteur. Souvent par le passé on a prédit la fin de la lithographie optique, mais cette technologie est et devrait rester pour les quelques années qui viennent la voie privilégiée. Cet article décrit les percées qui ont permis à la photolithographie de satisfaire toutes les exigences d'une production avancée de volume. Basée sur quelques principes d'optique, cette technologie a fait évoluer de manière significative l'outil d'exposition et la résine photosensible, en réduisant la longueur d'onde d'exposition et plus récemment en tirant parti de la cohérence de la lumière et en corrigeant les effets de proximité, en particulier par une conception de masques avancée et des techniques d'illumination optimisées. Enfin cet article discutera de quelques tendances récentes en photolithographie.

Optical lithography (also called photolithography) has been the key enabler for scaling feature sizes of integrated circuits, allowing the exponential growth of the semiconductor industry. Often in the past the end of optical lithography has been predicted but this technology is, and is expected to stay, mainstream for the next several years. This article will describe the breakthroughs which allowed photolithography fulfilling all the requirements of advanced volume manufacturing. Based on few principles of optics, this technology went through significant evolutions in the exposure tool and in the photoresist, in reducing the exposure wavelength and more recently by taking advantage of the light coherence and correcting proximity effects, esp. through advanced mask design and optimized illumination techniques. Finally this article will discuss some recent trends in photolithography.

Publié le :
DOI : 10.1016/j.crhy.2006.10.007
Keywords: Optical lithography, Photoresist, Phase shifting mask, Optical proximity correction, 157 nm lithography, Immersion lithography, EUV lithography
Mot clés : Lithographie optique, Résine photosensible, Masque à décalage de phase, Correction d'effets de proximité, Lithographie 157 nm, Lithographie en immersion, Lithographie extrême UV

Kurt Ronse 1

1 IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
@article{CRPHYS_2006__7_8_844_0,
     author = {Kurt Ronse},
     title = {Optical lithography{\textemdash}a historical perspective},
     journal = {Comptes Rendus. Physique},
     pages = {844--857},
     publisher = {Elsevier},
     volume = {7},
     number = {8},
     year = {2006},
     doi = {10.1016/j.crhy.2006.10.007},
     language = {en},
}
TY  - JOUR
AU  - Kurt Ronse
TI  - Optical lithography—a historical perspective
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 844
EP  - 857
VL  - 7
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.10.007
LA  - en
ID  - CRPHYS_2006__7_8_844_0
ER  - 
%0 Journal Article
%A Kurt Ronse
%T Optical lithography—a historical perspective
%J Comptes Rendus. Physique
%D 2006
%P 844-857
%V 7
%N 8
%I Elsevier
%R 10.1016/j.crhy.2006.10.007
%G en
%F CRPHYS_2006__7_8_844_0
Kurt Ronse. Optical lithography—a historical perspective. Comptes Rendus. Physique, Volume 7 (2006) no. 8, pp. 844-857. doi : 10.1016/j.crhy.2006.10.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.007/

[1] M. van den Brink et al. Step-and-scan and step-and-repeat: a technology comparison, Proc. SPIE, Volume 2726 (1996), pp. 734-753

[2] J. Goodman Introduction to Fourier Optics, McGraw–Hill Book Company, San Francisco, USA, 1968

[3] K. Ronse, PhD dissertation, K.U. Leuven, 1994

[4] C. Wagner et al. Advanced technology for extending optical lithography, Proc. SPIE, Volume 4000 (2000), pp. 344-357

[5] R. Dammel Diazonaftaquinon-Based Resists, SPIE, vol. TT11, SPIE, Bellingham, WA, 1993

[6] H. Ito Deep UV resists: evolution and status, Solid State Technology ( July 1996 ), p. 164

[7] M.D. Levenson; N.S. Viswanathan; R.A. Simpson Improving resolution in photolithography with a PSM, IEEE Trans. Electron Devices, Volume ED-29 (1982), p. 1828 (e.s)

[8] H. Jinbo; Y. Yamashita Improvement of the phase-shifter edge line mask method, Jap. J. Appl. Phys., Volume 30 (1991) no. 11B, p. 2998 (e.s)

[9] T. Terasawa; N. Hasegawa; T. Kurosaki; T. Tanaka 0.3-micron optical lithography using a PSM, Proc. SPIE, Volume 1088 (1989), p. 25 (e.s)

[10] K. Ronse; R. Jonckheere; C. Juffermans; L. Van den Hove Comparison of various phase shifting techniques and application to 0.35 μm ASIC designs, Proc. SPIE, Volume 1927 (1993), p. 2 (e.s)

[11] H.Y. Liu; L. Karklin; Y.T. Wang; Y.C. Pati Application of alternating phase-shifting masks to 140-nm gate patterning: II. Mask design and manufacturing tolerances, Optical Microlithography XI (Proc. SPIE), Volume 3334 (1998), pp. 2-14

[12] B.J. Lin Phase-shifting and other challenges in optical mask technology, Proc. SPIE, Volume 1496 (1991), pp. 54-79

[13] M. Noguchi; M. Muraki; Y. Iwasaki; A. Suzuki Subhalf-micron lithography system with phase-shifting effect, Proc. SPIE, Volume 1674 (1992), pp. 92-104

[14] N. Shiraishi; S. Hirukawa; Y. Takeuchi; N. Magome New imaging technique for 64M-DRAM, Proc. SPIE, Volume 1674 (1992), p. 741 (e.s)

[15] O. W Otto et al. Automated optical proximity correction—a rules based approach, Proc. SPIE, Volume 2197 (1994), pp. 278-293

[16] J.P. Stirniman; M. Rieger Fast proximity correction with zone sampling, Proc. SPIE, Volume 2197 (1994), pp. 294-301

[17] C. Spence et al. Full-chip lithography simulation and design analysis—how OPC is changing IC Design, Proc. SPIE, Volume 5751 (2005), pp. 1-14

Cité par Sources :

Commentaires - Politique