[Lithographie optique—défis présents et futurs]
La lithographie optique a été la technologie industrielle par excellence depuis plusieurs décennies. Elle est arrivée jusqu'à une longueur d'onde de 193 nm et une ouverture numérique de 0,93 et elle rencontrait des difficultés pour progresser plus avant jusqu'à l'entrée en lice de la lithographie en immersion. Cet article traite des limites des systèmes de lithographie sèche et en immersion, des défis présents et futurs pour pousser à l'extrême limite cette technique. Est incluse une discussion sur les défauts en lithographie par immersion, le point sur cette lithographie en immersion, l'illumination polarisée, les matériaux à fort indice de réfraction, les masques à immersion solide, la double exposition et la double impression.
Optical lithography has been an industrial workhorse for many decades. It has reached a wavelength of 193 nm, a Numerical Aperture (NA) of 0.93 but was facing difficulties to advance further until the debut of immersion lithography. This review deals with the limit of dry and immersion lithography systems, their present and future challenges to reach these very limits. A discussion of defects in immersion lithography, the status of immersion lithography, polarized illumination, high-index materials, solid-immersion mask, double exposure and double patterning is included.
Mots-clés : Microlithographie, Lithographie optique, Lithographie en immersion
Burn J. Lin 1
@article{CRPHYS_2006__7_8_858_0, author = {Burn J. Lin}, title = {Optical lithography{\textemdash}present and future challenges}, journal = {Comptes Rendus. Physique}, pages = {858--874}, publisher = {Elsevier}, volume = {7}, number = {8}, year = {2006}, doi = {10.1016/j.crhy.2006.10.005}, language = {en}, }
Burn J. Lin. Optical lithography—present and future challenges. Comptes Rendus. Physique, Ultimate lithography, Volume 7 (2006) no. 8, pp. 858-874. doi : 10.1016/j.crhy.2006.10.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.005/
[1] Where is the lost resolution?, Proc. SPIE, Volume 633 (1986), pp. 44-50
[2] Quarter- and sub-quarter micrometer optical lithography, Proceedings of the Symposia on Patterning Science and Technology II (ECS), Volume 92 (1991) no. 6, p. 3
[3] The
[4] Depth of focus in multi-layered media—a long-neglected phenomenon aroused by immersion lithography, J. Microlithography, Microfabrication, and Microsystems, Volume 3 (2004), pp. 21-27
[5] Full-field exposure tools for immersion lithography, Proc. SPIE, Volume 5754 (2005), pp. 655-668
[6] Immersion lithography and its impact on semiconductor manufacturing, J. Microlithography, Microfabrication, and Microsystems, Volume 3 (2004), pp. 377-395
[7] F.J. Liang, L.H. Shiu, C.K. Chen, L.J. Chen, T.S. Gau, B.J. Lin, Defect reduction with special routing for immersion lithography, J. Microlithography, Microfabrication, and Microsystems, submitted for publication
[8] Characterization of ArF immersion process for production, Proc. SPIE, Volume 5754 (2005), pp. 13-22
[9] Immersion lithography at 157 nm, J. Vac. Sci. Technol. B, Volume 19 (2001), pp. 2353-2356
[10] Resolution enhancement of 157 nm lithography by liquid immersion, J. Microlithography, Microfabrication, and Microsystems, Volume 1 (2002), pp. 225-228
[11] S. Peng, et al., New developments in second generation 193 nm immersion fluids for lithography with 1.5 numerical aperture, in: 2nd International Symposium on Immersion Lithography, Bruges, September 2005
[12] Y. Wang, et al., Material design for highly transparent fluids of the next generation ArF immersion lithography, in: 2nd International Symposium on Immersion Lithography, Bruges, September 2005
[13] Y. Inui, et al., Fluoride single crystals grown by the CZ method, in: 2nd International Symposium on Immersion Lithography, Bruges, Belgium, September 2005
[14] B.J. Lin, 4X/5X mask considerations for the future, in: ASML 157 nm Users' Forum, September 2000
[15] Double exposure for the contact layer of the 65-nm node, Proc. SPIE, Volume 5753 (2005), pp. 171-180
- High efficiency regulation method to generate an illumination source by adopting the micromirror array in DUV lithography, Applied Optics, Volume 63 (2024) no. 29, p. 7608 | DOI:10.1364/ao.536947
- Lithography Equipment, Handbook of Integrated Circuit Industry (2024), p. 1327 | DOI:10.1007/978-981-99-2836-1_65
- Extreme ultraviolet lithography, Nature Reviews Methods Primers, Volume 4 (2024) no. 1 | DOI:10.1038/s43586-024-00361-z
- Freeform reflector design for uniform illumination in a space-based remote sensor calibration system, Applied Optics, Volume 61 (2022) no. 16, p. 4678 | DOI:10.1364/ao.454095
- Resolution technology of lithography machine, Journal of Physics: Conference Series, Volume 2221 (2022) no. 1, p. 012041 | DOI:10.1088/1742-6596/2221/1/012041
- , 2021 14th IEEE International Conference on Industry Applications (INDUSCON) (2021), p. 266 | DOI:10.1109/induscon51756.2021.9529918
- General techniques for preparation of nanosensors, Nanosensors for Smart Manufacturing (2021), p. 19 | DOI:10.1016/b978-0-12-823358-0.00003-4
- WITHDRAWN: Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices, Progress in Materials Science, Volume 119 (2021), p. 100778 | DOI:10.1016/j.pmatsci.2021.100778
- Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices, Progress in Materials Science, Volume 120 (2021), p. 100823 | DOI:10.1016/j.pmatsci.2021.100823
- Single-step maskless nano-lithography on glass by femtosecond laser processing, Journal of Applied Physics, Volume 127 (2020) no. 16 | DOI:10.1063/1.5142700
- Bioinspired Multiscale Wrinkling Patterns on Curved Substrates: An Overview, Nano-Micro Letters, Volume 12 (2020) no. 1 | DOI:10.1007/s40820-020-00436-y
- Review of recent advances in inorganic photoresists, RSC Advances, Volume 10 (2020) no. 14, p. 8385 | DOI:10.1039/c9ra08977b
- Maskless laser nano-lithography of glass through sequential activation of multi-threshold ablation, Applied Physics Letters, Volume 114 (2019) no. 13 | DOI:10.1063/1.5080344
- Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography, Advanced Optical Materials, Volume 5 (2017) no. 21 | DOI:10.1002/adom.201700429
- Proposal and Analysis of a Silicon MMI Coupler-Based Electronically Controllable Photonic Switch, IEEE Journal of Selected Topics in Quantum Electronics, Volume 22 (2016) no. 6, p. 141 | DOI:10.1109/jstqe.2016.2545239
- Optical design of a 1-to-1 lithography projection, Optical Review, Volume 23 (2016) no. 5, p. 870 | DOI:10.1007/s10043-016-0262-2
- Step beyond Kohler illumination analysis for far-field quantitative imaging: angular illumination asymmetry (ANILAS) maps, Optics Express, Volume 24 (2016) no. 20, p. 22616 | DOI:10.1364/oe.24.022616
- Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field, Scientific Reports, Volume 6 (2016) no. 1 | DOI:10.1038/srep30476
- Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect, Sensors, Volume 16 (2016) no. 4, p. 538 | DOI:10.3390/s16040538
- Freeform surface off-axis illumination design with the Monge–Ampère equation method in optical lithography, Applied Optics, Volume 53 (2014) no. 31, p. 7296 | DOI:10.1364/ao.53.007296
- A simple approach for an ultra-precise patterning using deep x-ray lithography with a micron-patterned x-ray mask, International Journal of Precision Engineering and Manufacturing, Volume 15 (2014) no. 11, p. 2385 | DOI:10.1007/s12541-014-0604-6
- Simulation based study of thermal effects on periodic nanostructures fabricated by laser interference, Materials Science in Semiconductor Processing, Volume 17 (2014), p. 119 | DOI:10.1016/j.mssp.2013.09.007
- Modeling of nanolithography processes, Nanolithography (2014), p. 444 | DOI:10.1533/9780857098757.444
- , 2013 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, Volume 9042 (2013), p. 90420J | DOI:10.1117/12.2033627
- Double oxide deposition and etching nanolithography for wafer-scale nanopatterning with high-aspect-ratio using photolithography, Applied Physics Letters, Volume 103 (2013) no. 3 | DOI:10.1063/1.4813738
- Effect of crystal plane orientation on the friction-induced nanofabrication on monocrystalline silicon, Nanoscale Research Letters, Volume 8 (2013) no. 1 | DOI:10.1186/1556-276x-8-137
- Double transfer UV-curing nanoimprint lithography, Nanotechnology, Volume 24 (2013) no. 46, p. 465304 | DOI:10.1088/0957-4484/24/46/465304
- , 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (2012), p. 372 | DOI:10.1109/nems.2012.6196796
- Gradual tilting exposure photo and nano lithography technique, Applied Optics, Volume 51 (2012) no. 16, p. 3329 | DOI:10.1364/ao.51.003329
- Lithographic Resists, Encyclopedia of Polymer Science and Technology (2012) | DOI:10.1002/0471440264.pst183.pub2
- Freeform lens arrays for off-axis illumination in an optical lithography system, Applied Optics, Volume 50 (2011) no. 5, p. 725 | DOI:10.1364/ao.50.000725
- Freeform lens for off-axis illumination in optical lithography system, Optics Communications, Volume 284 (2011) no. 12, p. 2662 | DOI:10.1016/j.optcom.2011.02.028
- Beyond-limit light focusing in the intermediate zone, Optics Letters, Volume 36 (2011) no. 23, p. 4497 | DOI:10.1364/ol.36.004497
- , The 8th Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand - Conference 2011 (2011), p. 42 | DOI:10.1109/ecticon.2011.5947766
- , The 8th Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand - Conference 2011 (2011), p. 46 | DOI:10.1109/ecticon.2011.5947767
- Simple and Versatile Methods To Integrate Directed Self-Assembly with Optical Lithography Using a Polarity-Switched Photoresist, ACS Nano, Volume 4 (2010) no. 8, p. 4815 | DOI:10.1021/nn100686v
- Advances in Patterning Materials for 193 nm Immersion Lithography, Chemical Reviews, Volume 110 (2010) no. 1, p. 321 | DOI:10.1021/cr900244n
- Sculpting Nanometric Patterns: The Top‐down Approach, Ideas in Chemistry and Molecular Sciences (2010), p. 379 | DOI:10.1002/9783527630530.ch15
- The Future of Non-planar Nanoelectronics MOSFET Devices: A Review, Journal of Applied Sciences, Volume 10 (2010) no. 18, p. 2136 | DOI:10.3923/jas.2010.2136.2146
- Integration of Directed Self-Assembly with 193 nm Lithography, Journal of Photopolymer Science and Technology, Volume 23 (2010) no. 1, p. 11 | DOI:10.2494/photopolymer.23.11
- Novel Molecular Diodes Developed by Chemical Conjugation of Carbon Nanotubes with Peptide Nucleic Acid, New Trends in Nanotechnology and Fractional Calculus Applications (2010), p. 3 | DOI:10.1007/978-90-481-3293-5_1
- , 2008 International Conference on Nanoscience and Nanotechnology (2008), p. 184 | DOI:10.1109/iconn.2008.4639277
- Roughness evolution and scatter losses of multilayers for 193 nm optics, Applied Optics, Volume 47 (2008) no. 13, p. C88 | DOI:10.1364/ao.47.000c88
- Surfaces: Two-Dimensional Templates, Templates in Chemistry III, Volume 287 (2008), p. 45 | DOI:10.1007/128_2008_151
- Unconventional methods for forming nanopatterns, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, Volume 220 (2006) no. 3, p. 81 | DOI:10.1243/17403499jnn103
Cité par 45 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier