Comptes Rendus
Optical lithography—present and future challenges
[Lithographie optique—défis présents et futurs]
Comptes Rendus. Physique, Volume 7 (2006) no. 8, pp. 858-874.

La lithographie optique a été la technologie industrielle par excellence depuis plusieurs décennies. Elle est arrivée jusqu'à une longueur d'onde de 193 nm et une ouverture numérique de 0,93 et elle rencontrait des difficultés pour progresser plus avant jusqu'à l'entrée en lice de la lithographie en immersion. Cet article traite des limites des systèmes de lithographie sèche et en immersion, des défis présents et futurs pour pousser à l'extrême limite cette technique. Est incluse une discussion sur les défauts en lithographie par immersion, le point sur cette lithographie en immersion, l'illumination polarisée, les matériaux à fort indice de réfraction, les masques à immersion solide, la double exposition et la double impression.

Optical lithography has been an industrial workhorse for many decades. It has reached a wavelength of 193 nm, a Numerical Aperture (NA) of 0.93 but was facing difficulties to advance further until the debut of immersion lithography. This review deals with the limit of dry and immersion lithography systems, their present and future challenges to reach these very limits. A discussion of defects in immersion lithography, the status of immersion lithography, polarized illumination, high-index materials, solid-immersion mask, double exposure and double patterning is included.

Publié le :
DOI : 10.1016/j.crhy.2006.10.005
Keywords: Microlithography, Optical lithography, Immersion lithography
Mot clés : Microlithographie, Lithographie optique, Lithographie en immersion

Burn J. Lin 1

1 TSMC, Ltd., Hsinchu, 300-77 Taiwan, ROC
@article{CRPHYS_2006__7_8_858_0,
     author = {Burn J. Lin},
     title = {Optical lithography{\textemdash}present and future challenges},
     journal = {Comptes Rendus. Physique},
     pages = {858--874},
     publisher = {Elsevier},
     volume = {7},
     number = {8},
     year = {2006},
     doi = {10.1016/j.crhy.2006.10.005},
     language = {en},
}
TY  - JOUR
AU  - Burn J. Lin
TI  - Optical lithography—present and future challenges
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 858
EP  - 874
VL  - 7
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.10.005
LA  - en
ID  - CRPHYS_2006__7_8_858_0
ER  - 
%0 Journal Article
%A Burn J. Lin
%T Optical lithography—present and future challenges
%J Comptes Rendus. Physique
%D 2006
%P 858-874
%V 7
%N 8
%I Elsevier
%R 10.1016/j.crhy.2006.10.005
%G en
%F CRPHYS_2006__7_8_858_0
Burn J. Lin. Optical lithography—present and future challenges. Comptes Rendus. Physique, Volume 7 (2006) no. 8, pp. 858-874. doi : 10.1016/j.crhy.2006.10.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.005/

[1] B.J. Lin Where is the lost resolution?, Proc. SPIE, Volume 633 (1986), pp. 44-50

[2] B.J. Lin Quarter- and sub-quarter micrometer optical lithography, Proceedings of the Symposia on Patterning Science and Technology II (ECS), Volume 92 (1991) no. 6, p. 3

[3] B.J. Lin The k3 coefficient in non-paraxial λ/NA scaling equations for resolution, depth-of-focus, and immersion lithography, J. Microlithography, Microfabrication, and Microsystems, Volume 1 (2002), pp. 7-122

[4] B.J. Lin Depth of focus in multi-layered media—a long-neglected phenomenon aroused by immersion lithography, J. Microlithography, Microfabrication, and Microsystems, Volume 3 (2004), pp. 21-27

[5] S. Owa; H. Nagasaka; Y. Ishii; K. Shirishi; S. Hirukawa Full-field exposure tools for immersion lithography, Proc. SPIE, Volume 5754 (2005), pp. 655-668

[6] B.J. Lin Immersion lithography and its impact on semiconductor manufacturing, J. Microlithography, Microfabrication, and Microsystems, Volume 3 (2004), pp. 377-395

[7] F.J. Liang, L.H. Shiu, C.K. Chen, L.J. Chen, T.S. Gau, B.J. Lin, Defect reduction with special routing for immersion lithography, J. Microlithography, Microfabrication, and Microsystems, submitted for publication

[8] J.H. Chen; L.J. Chen; T.Y. Fang; T.C. Fu; L.H. Shiu; Y.T. Huang; N. Chen; D.C. Oweyang; M.C. Wu; S.C. Wang; C.H. Lin; C.K. Chen; W.M. Chen; T.S. Gau; B.J. Lin; R. Moerman; W. Gehoel-van Ansem; E. van der Heijden; F. de Johng; D. Oorschot; H. Boom; M. Hoogendorp; C. Wagner; B. Koek Characterization of ArF immersion process for production, Proc. SPIE, Volume 5754 (2005), pp. 13-22

[9] M. Switkes; M. Rothschild Immersion lithography at 157 nm, J. Vac. Sci. Technol. B, Volume 19 (2001), pp. 2353-2356

[10] M. Switkes; M. Rothschild Resolution enhancement of 157 nm lithography by liquid immersion, J. Microlithography, Microfabrication, and Microsystems, Volume 1 (2002), pp. 225-228

[11] S. Peng, et al., New developments in second generation 193 nm immersion fluids for lithography with 1.5 numerical aperture, in: 2nd International Symposium on Immersion Lithography, Bruges, September 2005

[12] Y. Wang, et al., Material design for highly transparent fluids of the next generation ArF immersion lithography, in: 2nd International Symposium on Immersion Lithography, Bruges, September 2005

[13] Y. Inui, et al., Fluoride single crystals grown by the CZ method, in: 2nd International Symposium on Immersion Lithography, Bruges, Belgium, September 2005

[14] B.J. Lin, 4X/5X mask considerations for the future, in: ASML 157 nm Users' Forum, September 2000

[15] D.C. Owe-Yang; S.S. Yu; H. Chen; C.Y. Chang; B.C. Ho; C.H. Lin; B.J. Lin Double exposure for the contact layer of the 65-nm node, Proc. SPIE, Volume 5753 (2005), pp. 171-180

Cité par Sources :

Commentaires - Politique