Comptes Rendus
Advances in synchrotron hard X-ray based imaging
Comptes Rendus. Physique, Volume 9 (2008) no. 5-6, pp. 624-641.

Modern synchrotron radiation (SR) sources have dramatically fostered the use of SR-based X-ray imaging. The relevant information such as density, chemical composition, chemical states, structure, and crystallographic perfection is mapped in two, or, increasingly, in three dimensions. The development of nano-science requires pushing spatial resolution down towards the nanoscale.

The present article describes a selection of hard X-ray imaging and microanalysis techniques that emerged over the last few years, by taking advantage of the flux and coherence of the SR beams, as well as exploiting the advances in X-ray optics and detectors, and the increased possibilities of computers (memory, speed). Examples are given to illustrate the opportunities associated with the use of these techniques, and a number of recent references are provided.

Les sources modernes de rayonnement synchrotron ont permis un développement considérable de l'utilisation des techniques d'imagerie. Des paramètres importants de l'échantillon tels sa densité, composition chimique, état chimique, structure et perfection cristallographique sont cartographiés à deux et, de plus en plus, à trois dimensions. Le développement des nano-sciences exige des efforts pour atteindre une résolution spatiale nanométrique.

Cet article décrit une sélection de techniques d'imagerie et microanalyse utilisant des rayons X durs, qui se sont développées au cours des dernières années, grâce à l'utilisation du haut flux et cohérence des faisceaux synchrotron, tout en exploitant les avancées en optique des rayons X et détecteurs, et les performances accrues des ordinateurs (mémoire, vitesse). Cet article fournit des exemples montrant les possibilités de ces techniques, et de nombreuses références récentes.

Published online:
DOI: 10.1016/j.crhy.2007.08.003
Keywords: Synchrotron radiation, X-ray imaging
Mot clés : Rayonnement synchrotron, Imagerie aux rayons X

José Baruchel 1; Pierre Bleuet 1; Alberto Bravin 1; Paola Coan 1; Enju Lima 1; Anders Madsen 1; Wolfgang Ludwig 1; Petra Pernot 1; Jean Susini 1

1 European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
@article{CRPHYS_2008__9_5-6_624_0,
     author = {Jos\'e Baruchel and Pierre Bleuet and Alberto Bravin and Paola Coan and Enju Lima and Anders Madsen and Wolfgang Ludwig and Petra Pernot and Jean Susini},
     title = {Advances in synchrotron hard {X-ray} based imaging},
     journal = {Comptes Rendus. Physique},
     pages = {624--641},
     publisher = {Elsevier},
     volume = {9},
     number = {5-6},
     year = {2008},
     doi = {10.1016/j.crhy.2007.08.003},
     language = {en},
}
TY  - JOUR
AU  - José Baruchel
AU  - Pierre Bleuet
AU  - Alberto Bravin
AU  - Paola Coan
AU  - Enju Lima
AU  - Anders Madsen
AU  - Wolfgang Ludwig
AU  - Petra Pernot
AU  - Jean Susini
TI  - Advances in synchrotron hard X-ray based imaging
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 624
EP  - 641
VL  - 9
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.08.003
LA  - en
ID  - CRPHYS_2008__9_5-6_624_0
ER  - 
%0 Journal Article
%A José Baruchel
%A Pierre Bleuet
%A Alberto Bravin
%A Paola Coan
%A Enju Lima
%A Anders Madsen
%A Wolfgang Ludwig
%A Petra Pernot
%A Jean Susini
%T Advances in synchrotron hard X-ray based imaging
%J Comptes Rendus. Physique
%D 2008
%P 624-641
%V 9
%N 5-6
%I Elsevier
%R 10.1016/j.crhy.2007.08.003
%G en
%F CRPHYS_2008__9_5-6_624_0
José Baruchel; Pierre Bleuet; Alberto Bravin; Paola Coan; Enju Lima; Anders Madsen; Wolfgang Ludwig; Petra Pernot; Jean Susini. Advances in synchrotron hard X-ray based imaging. Comptes Rendus. Physique, Volume 9 (2008) no. 5-6, pp. 624-641. doi : 10.1016/j.crhy.2007.08.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.08.003/

[1] F. Adams; L. Van Vaeck; R. Barrett Advanced analytical techniques: platform for nano materials science, Spectrochim. Acta B, Volume 60 (2005), p. 13

[2] M.A. Marcus; A.A. MacDowell; R. Celestre; A. Manceau; T. Miller; H.A. Padmore; R.E. Sublett Beamline 10.3.2 at ALS: a hard X-ray microprobe for environmental and materials sciences, J. Synchrotron Rad., Volume 11 (2004), p. 239

[3] J. Susini, M. Salomé, R. Tucoulou, G. Martinez-Criado, S. Bohic, D. Eichert, P. Bleuet, I. Letard, M. Cotte, J. Cauzid, B. Fayard, R. Baker, S. Labouré, X-ray micro-analysis activities at the ESRF, in: Proc. 8th Int. Conf. X-Ray Microscopy IPAP Conf. Series, vol. 7, 2006, p. 18

[4] F. Peyrin; A.M. Charvet La tomographie synchrotron, Traité IC2 “La tomographie”, Editions Hermès, 2002 (Chapter 15, p. 219)

[5] J. Baruchel; J.-Y. Buffière; P. Cloetens; M. Di Michiel; E. Ferrie; W. Ludwig; E. Maire; L. Salvo Advances in synchrotron radiation microtomography, Scripta Mater., Volume 55 (2006), p. 41

[6] P. Tafforeau; R. Boistel; E. Boller; A. Bravin; M. Brunet; Y. Chaimanee; P. Cloetens; M. Feist; J. Hoszowska; J.-J. Jaeger; R.F. Kay; V. Lazzari; L. Marivaux; A. Nel; C. Nemoz; X. Thibault; P. Vignaud; S. Zabler Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens, Appl. Phys. A, Mat. Sci. Process., Volume 83 (2006), p. 195

[7] A. Pyzalla; D. Camin; T. Buslaps; M. Di Michiel; H. Kaminski; A. Kottar; A. Pernack; W. Reimers Simultaneous tomography and diffraction analysis of creep damage, Science, Volume 308 (2005), p. 92

[8] K. Uesugi; T. Sera; N. Yagi Fast tomography using quasi-monochromatic undulator radiation, J. Synchrotron Rad., Volume 13 (2006), p. 403

[9] C. Scheuerlein; M. Di Michiel; A. Haibel On the formation of voids in internal tin Nb3Sn superconductors, Appl. Phys. Lett., Volume 90 (2007), p. 132510

[10] S. Agliozzo; E. Brunello; H. Klein; L. Mancini; J. Härtwig; J. Baruchel; J. Gastaldi Extended investigation of porosity in quasicrystals by synchrotron X-ray phase contrast radiography—I: in icosahedral Al–Pd–Mn grains, J. Cryst. Growth, Volume 281 (2005), p. 623

[11] S. Agliozzo; J. Gastaldi; H. Klein; J. Härtwig; J. Baruchel; E. Brunello In-situ study of the annealing behaviour of porosity in icosahedral Al–Pd–Mn quasicrystal using third generation X-ray synchrotron radiation imaging, Phys. Rev. B, Volume 69 (2004), p. 144204

[12] J. Gastaldi; T. Schenk; G. Reinhart; H. Klein; J. Härtwig; N. Mangelinck-Noël; B. Grushko; H. Nguyen Thi; P. Pino; J. Baruchel In situ observation of pore evolution during melting and solidification of Al–Pd–Mn quasicrystals by synchrotron X-ray radiography, Phil. Mag., Volume 86 (2006), p. 335

[13] Y.J. Wang; K.-S. Im; K. Fezzaa; W.K. Lee; J. Wang; P. Micheli; C. Laub Quantitative X-ray phase contrast imaging of air-assisted water sprays with high Weber numbers, Appl. Phys. Lett., Volume 89 (2006), p. 151913

[14] P. Fenter; C. Park; Z. Zhang; S. Wang Observation of subnanometre-high surface topography with X-ray reflection phase-contrast microscopy, Nature Phys., Volume 2 (2006), p. 700

[15] P. Cloetens; W. Ludwig; J. Baruchel; J.P. Guigay; P. Rejmankova-Pernot; M. Salomé-Pateyron; M. Schlenker; J.Y. Buffière; E. Maire; G. Peix Hard X-ray phase imaging using simple propagation of a coherent synchrotron radiation beam, J. Phys. D: Appl. Phys., Volume 32 (1999), p. A145

[16] P. Cloetens; W. Ludwig; J. Baruchel; D. Van Dyck; J. Van Landuyt; J.P. Guigay; M. Schlenker Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays, Appl. Phys. Lett., Volume 75 (1999), p. 2912

[17] P. Cloetens; R. Mache; M. Schlenker; L. Lerbs-Mache Quantitative phase tomography of Arabidopsis seeds reveals intercellular void network, Proc. Natl. Acad. Sci., Volume 103 (2006), p. 14626

[18] S. Zabler; P. Cloetens; J.-P. Guigay; J. Baruchel; M. Schlenker Optimization of phase contrast imaging using hard X-rays, Rev. Sci. Instrum., Volume 76 (2005), p. 1

[19] J.P. Guigay; M. Langer; P. Cloetens; R. Boistel Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region, Opt. Lett., Volume 32 (2007), p. 1617

[20] R. Mokso; P. Cloetens; E. Maire; W. Ludwig; J.Y. Buffière Nanoscale zoom tomography with hard X rays using Kirkpatrick–Baez optics, Appl. Phys. Lett., Volume 90 (2007), p. 144104

[21] D. Shapiro; P. Thibault; T. Beetz; V. Elser; M. Howells; C. Jacobsen; J. Kirz; E. Lima; H. Miao; A.M. Neiman; D. Sayre Biological imaging by soft X-ray diffraction microscopy, Proc. Natl. Acad. Sci., Volume 102 (2005), p. 15343

[22] J. Miao; C.-C. Chen; C. Song; Y. Nishino; Y. Kohmura; T. Ishikawa; D. Ramunno-Johnson; T.-K. Lee; S.H. Risbud Three-dimensional GaN–Ga2O3 core shell structure revealed by X-ray diffraction microscopy, Phys. Rev. Lett., Volume 97 (2006), p. 215503

[23] M.A. Pfeifer; G.J. Williams; I.A. Vartanyants; R. Harder; I.K. Robinson Three-dimensional mapping of a deformation field inside a nanocrystal, Nature, Volume 442 (2006), p. 63

[24] S. Eisebitt; J. Lüning; W.F. Schlotter; M. Lörgen; O. Hellwig; W. Eberhardt; J. Stöhr Lensless imaging of magnetic nanostructures by X-ray spectro-holography, Nature, Volume 432 (2004), p. 885

[25] H. He; U. Weierstall; J.C.H. Spence; M. Howells; H.A. Padmore; S. Marchesini; H.N. Chapman Use of extended and prepared reference objects in experimental Fourier transform X-ray holography, Appl. Phys. Lett., Volume 85 (2004), p. 2454

[26] R.W. Gerchberg; W.O. Saxton A practical algorithm for determination of phase from image and diffraction plane pictures, Optik, Volume 35 (1972), p. 237

[27] J.R. Fienup Phase retrieval algorithms: a comparison, Appl. Opt., Volume 21 (1982), p. 2758

[28] J.M. Rodenburg; A.C. Hurst; A.G. Cullis; B.R. Dobson; F. Pfeiffer; O. Bunk; C. David; K. Jefimovs; I. Johnson Hard-X-ray lensless imaging of extended objects, Phys. Rev. Lett., Volume 98 (2007), p. 034801

[29] E. Lima, F. Glassmeier, F. Zontone, A. Madsen, unpublished

[30] J. Miao; K.O. Hodgson; T. Ishikawa; C.A. Larabell; M.A. Legros; Y. Nishino Imaging whole Escherichia coli bacteria by using single-particle X-ray diffraction, Proc. Natl. Acad. Sci., Volume 100 (2003), p. 110

[31] K.A. Taylor; R.M. Glasser Electron diffraction of frozen, hydrated protein crystals, Science, Volume 186 (1974), p. 1036

[32] M. Adrian; J. Dubochet; J. Lepault; A.W. McDowall Cryo-electron microscopy of viruses, Nature, Volume 308 (1984), p. 32

[33] T.J. Davis; D. Gao; T.E. Gureyev; A.W. Stevenson; S.W. Wilkins Phase-contrast imaging of weakly absorbing materials using hard X-rays, Nature, Volume 373 (1995), p. 595

[34] A. Bravin Exploiting the X-ray refraction contrast with an analyser: the state of the art, J. Phys. D: Appl. Phys., Volume 36 (2003), p. A24

[35] D. Chapman; W. Thomlinson; R. Johnston; D. Washburn; E. Pisano; N. Gmür; Z. Zhong; R. Menk; F. Arfelli; D. Sayers Diffraction enhanced X-ray imaging, Phys. Med. Biol., Volume 42 (1997), p. 2015

[36] E. Pagot; P. Cloetens; S. Fiedler; A. Bravin; P. Coan; J. Baruchel; J. Härtwig; W. Thomlinson A method to extract quantitative information from analyser-based X-ray phase contrast imaging, Appl. Phys. Lett., Volume 82 (2003), p. 3421

[37] F. Arfelli; V. Bonvicini; A. Bravin; G. Cantatore; E. Castelli; L.D. Palma; M. DiMichiel; M. Fabrizioli; R. Longo; R.H. Menk; A. Olivo; S. Pani; D. Pontoni; P. Poropat; M. Prest; A. Rashevsky; M. Ratti; L. Rigon; G. Tromba; A. Vacchi; E. Vallazza; F. Zanconati Mammography with synchrotron radiation: phase-detection techniques, Radiology, Volume 215 (2000), p. 286

[38] E.D. Pisano; R.E. Johnston; D. Chapman; J. Geradts; M.V. Iacocca; C.A. Livasy; D.B. Washburn; D.E. Sayers; Z. Zhong; M.Z. Kiss; W.C. Thomlinson Human breast cancer specimens: diffraction enhanced imaging with histologic correlation improved conspicuity of lesion detail compared with digital radiography, Radiology, Volume 214 (2000), p. 895

[39] J. Keyriläinen; M. Fernández; S. Fiedler; A. Bravin; M.-L. Karjalainen-Lindsberg; P. Virkkunen; E.-M. Elo; M. Tenhunen; P. Suortti; W. Thomlinson Visualisation of calcifications and thin collagen strands in human breast tumour specimens by the diffraction-enhanced imaging technique: a comparison with conventional mammography and histology, Europ. J. Radiol., Volume 53 (2005), p. 226

[40] E. Pagot; S. Fiedler; P. Cloetens; A. Bravin; P. Coan; K. Fezzaa; J. Baruchel; J. Härtwig Quantitative comparison between two-phase contrast techniques: Diffraction Enhanced Imaging and Phase Propagation Imaging, Phys. Med. Biol., Volume 50 (2005), p. 709

[41] A. Bravin; J. Keyriläinen; M. Fernandez; S. Fiedler; C. Nemoz; M.-L. Karjalainen-Lindsberg; M. Tenhunen; P. Virkkunen; M. Leidenius; K. von Smitten; P. Sipila; P. Suortti High-resolution CT by diffraction enhanced X-ray imaging: mapping of breast tissue samples and comparison with their histo-pathology, Phys. Med. Biol., Volume 52 (2007), p. 2197

[42] J. Mollenhauer; M.E. Aurich; Z. Zhong; C. Muehleman; A.A. Cole; M. Hasnah; O. Oltulu; K.E. Kuettner; A. Margulis; L.D. Chapman Diffraction-enhanced X-ray imaging of articular cartilage, Osteoarthritis Cart., Volume 10 (2002), p. 163

[43] A. Wagner; M. Aurich; N. Sieber; M. Stoessel; W.-D. Wetzel; K. Schmuck; M. Lohmann; J. Metge; B. Reime; P. Coan; A. Bravin; F. Arfelli; G. Heitner; R. Menk; T. Irving; Z. Zhong; C. Muehleman; J.A. Mollenhauer Options and limitations of joint cartilage imaging: DEI in comparison to MRI and sonography, Nuclear Instrum. Methods A, Volume 548 (2005), p. 47

[44] P. Modregger; D. Lübbert; P. Schäfer; R. Köhler Magnified X-ray phase imaging using asymmetric Bragg reflection: Experiment and theory, Phys. Rev. B, Volume 74 (2006), p. 054107

[45] J.P. Guigay; E. Pagot; P. Cloetens Fourier optics approach to X-ray analyser-based imaging, Opt. Commun., Volume 270 (2007), p. 180

[46] P. Coan; A. Bravin Analysis of the X-ray refraction using an array-structured detector, Appl. Phys. Lett., Volume 90 (2007), p. 184106

[47] A. Olivo; F. Arfelli; D. Dreossi; R. Longo; R.H. Menk; S. Pani; P. Poropat; L. Rigon; F. Zanconati; E. Castelli Preliminary study on extremely small angle X-ray scatter imaging with synchrotron radiation, Phys. Med. Biol., Volume 47 (2002), p. 469

[48] W. Chao; B.D. Harteneck; J.A. Liddle; E.H. Anderson; D.T. Attwood Soft X-ray microscopy at a spatial resolution better than 15 nm, Nature, Volume 435 (2005), p. 1210

[49] C. Schroer; B. Lengeler Focusing hard X-rays to nanometer dimensions by adiabatically focusing lenses, Phys. Rev. Lett., Volume 94 (2005), p. 054802

[50] H. Hidekazu Mimura; H. Yumoto; S. Matsuyama; Y. Sano; K. Yamamura; Y. Mori; M. Yabashi; Y. Nishino; K. Tamasaku; T. Ishikawa; K. Yamauchi Efficient focusing of hard X rays to 25 nm by a total reflection mirror, Appl. Phys. Lett., Volume 90 (2007), p. 051903

[51] H. Kang; J. Maser; G. Stephenson; C. Liu; R. Conley; A. Macrander; S. Vogt Nanometer linear focusing of hard X rays by a multilayer Laue lens, Phys. Rev. Lett., Volume 96 (2006), p. 127401

[52] O. Hignette; P. Cloetens; G. Rostaing; P. Bernard; C. Morawe Efficient sub 100 nm focusing of hard X rays, Rev. Sci. Instrum., Volume 76 (2005), p. 063709

[53] P.M. Bertsch; D.B. Hunter Applications of synchrotron-based X-ray microprobes, Chem. Rev., Volume 101 (2001), p. 1809

[54] G.E. Ice X-Ray Microprobe for Fluorescence and Diffraction Analysis, Methods in Materials Research: A Current Protocols Publication, John Wiley, New York, 1998

[55] M. De Angelis; M.C. Morel-Fourcade; J.M. Barnola; J. Susini; P. Duval Brine micro-droplets and solid inclusions in accreted ice from Lake Vostok (East Antarctica), Geophys. Res. Lett., Volume 32 (2005), p. L12501

[56] G. Martínez-Criado; R. Steinmann; B. Alén; A. Labrador; D. Fuster; J.M. Ripalda; A. Homs; S. Labouré; J. Susini New cryogenic environment for beamline ID22 at the European Synchrotron Radiation Facility, Rev. Sci. Instrum., Volume 78 (2007), p. 025106

[57] N. Métrich; J. Susini; E. Foy; F. Farges; D. Massare; L. Sylla; S. Lequien; M. Bonnin-Mosbah Redox state of iron in peralkaline rhyolitic glass/melt: X-ray absorption micro spectroscopy experiments at high temperature, Chem. Geol., Volume 231 (2006), p. 350

[58] C. Schmidt; K. Rickers; R. Wirth; L. Nasdala; J.M. Hanchar Low-temperature Zr mobility: An in situ synchrotron-radiation XRF study of the effect of radiation damage in zircon on the element release in H2O+HCl± SiO2 fluids, Amer. Mineralogist, Volume 91 (2006), p. 1211

[59] P.M. Oger; I. Daniel; A. Picard Development of a low-pressure diamond anvil cell and analytical tools to monitor microbial activities in situ under controlled P and T, Biochimica et Biophysica Acta, Volume 1764 (2006), p. 434

[60] D. Brownlee et al. Comet 81P/Wild 2 under a microscope, Science, Volume 314 (2006), p. 1711

[61] M. Sandström; F. Jalilehvand; E. Damian; Y. Fors; U. Gelius; M. Jones; M. Salomé Sulfur accumulation in the timbers of King Henry VIII's warship Mary Rose: A pathway in the sulfur cycle of conservation concern, Proc. Natl. Acad. Sci. USA, Volume 102 (2005), p. 14165

[62] M. Cotte; J. Susini; A. Moscato; C. Gratziu; A. Bertagnini; N. Metrich Blackening of Pompeian Cinnabar paintings studied by X-ray micro-spectroscopic imaging, Analyt. Chem., Volume 78 (2006), p. 7484

[63] G. Martínez-Criado; B. Alén; A. Homs; A. Somogyi; C. Miskys; J. Susini; J. Pereira-Lachataignerais; J. Martinez-Pastor Scanning X-ray excited optical luminescence microscopy in GaN, Appl. Phys. Lett., Volume 89 (2006), p. 221913

[64] L. Finney; S. Mandava; L. Ursos; W. Zhang; D. Rodi; S. Vogt; D. Legnini; J. Maser; F. Ikpatt; O.I. Olopade; D. Glesne X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis, Natl. Acad. Sci. USA, Volume 104 (2007), pp. 2247-2252

[65] B. Golosio; A. Somogyi; A. Simionovici; P. Bleuet; J. Susini; L. Lemelle Nondestructive three-dimensional elemental microanalysis by combined helical X-ray microtomographies, Appl. Phys. Lett., Volume 84 (2004), p. 2199

[66] L. Vincze; B. Vekemans; F.E. Brenker; G. Falkenberg; K. Rickers; A. Somogyi; M. Kersten; F. Adams Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging, Analyt. Chem., Volume 76 (2004), p. 6786

[67] M.C. Camerani; B. Golosio; A. Somogyi; A.S. Simionovici; B.M. Steenari; I. Panas X-ray fluorescence tomography of individual municipal solid waste and biomass fly ash particles, Analyt. Chem., Volume 76 (2004), p. 1586

[68] Z.H. Hu; P.A. Thomas; A. Snigirev; I. Snigireva; A. Souvorov; P.G.R. Smith; G.W. Ross; S. Teat Phase-mapping of periodically domain-inverted LiNbO3 with coherent X-rays, Nature, Volume 393 (1998), p. 690

[69] P. Rejmankova-Pernot; P. Cloetens; J. Baruchel; J.P. Guigay; P. Moretti Phase retrieval by combined Bragg and Fresnel X-ray diffraction imaging, Phys. Rev. Lett., Volume 81 (1998), p. 3435

[70] P. Pernot-Rejmankova; P.A. Thomas; P. Cloetens; T. Lyford; J. Baruchel Structural matching of ferroelectric domains and associated distortion in KTP crystals, J. Phys.: Condens. Matter, Volume 15 (2003), p. 1613

[71] D. Lübbert; C. Ferrari; P. Mikulík; P. Pernot; L. Helfen; N. Verdi; E. Villeggi; D. Korytár; T. Baumbach Distribution and Burgers vectors of dislocations in semiconductor wafers investigated by Rocking Curve Imaging, J. Appl. Cryst., Volume 38 (2005), p. 91

[72] P. Mikulík; D. Lübbert; D. Korytár; P. Pernot; T. Baumbach Synchrotron area diffractometry as a tool for spatial high-resolution three dimensional lattice misorientation mapping, J. Phys. D: Appl. Phys., Volume 36 (2003), p. A74

[73] D. Lübbert; P. Mikulík; P. Pernot; L. Helfen; M.D. Craven; S. Keller; S. DenBaars; T. Baumbach X-ray microdiffraction imaging investigations of wing tilt in epitaxially overgrown GaN, Phys. Stat. Sol. (a), Volume 203 (2006), p. 1733

[74] P. Mikulík; D. Lübbert; P. Pernot; L. Helfen; T. Baumbach Crystalline misorientation analysis in Ga-based wafers and ELO samples by rocking curve imaging, Appl. Surf. Sci., Volume 253 (2006), p. 188

[75] J. Baruchel; C. Medrano; M. Schlenker Synchrotron radiation topographic study of the thick ferromagnetic-fan interface in MnP, J. Phys. D: Appl. Phys., Volume 38 (2005), p. A67

[76] H.F. Poulsen 3D X-Ray Diffraction Microscopy, Springer Tracts in Modern Physics, Springer, Berlin, 2004

[77] G.E. Ice; B.C. Larson; W. Yang; J.D. Budai; J.Z. Tischler; J.W.L. Pang; R.I. Barabash; W. Liu Polychromatic X-ray microdiffraction studies of mesoscale structure and dynamics, J. Synchr. Rad., Volume 12 (2005), p. 155

[78] W. Ludwig, S. Schmidt, E.M. Lauridsen, H.F. Poulsen, Diffraction contrast tomography: a novel technique for 3D grain mapping in polycrystals. Part I: direct beam case, J. Appl. Cryst., submitted for publication

[79] G. Johnson, A. King, M. Gonzalves-Hoennicke, W. Ludwig, Diffraction contrast tomography: a novel technique for 3D grain mapping in polycrystals. Part II: the combined case, J. Appl. Cryst., submitted for publication

[80] R. Gordon; R. Bender; G.T. Herman Algebraic reconstruction techniques (ART) for three dimensional electron microscopy and X-ray photography, J. Theor. Biol., Volume 29 (1970), p. 471

Cited by Sources:

Comments - Policy