[Électronique à échelle moléculaire]
L'électronique moléculaire est envisagée en tant que candidat prometteur pour la nanoélectronique du futur. Plus qu'une réponse possible au problème ultime de miniaturisation en nanoélectronique, l'électronique moléculaire est envisagée comme une approche possible et raisonnable pour assembler un grand nombre d'objets nanométriques (des molécules, des nanoparticules, des nanotubes et des nanofils) pour étudier de nouvelles architectures de composant et circuit. C'est également une approche intéressante pour réduire de manière significative les coûts de fabrication, aussi bien que les coûts énergétiques de calcul, comparés aux technologies habituelles à semi-conducteur. Par ailleurs, l'électronique moléculaire présente un large champ d'investigation : des objets quantique, pour examiner de nouveaux paradigmes, aux dispositifs hybrides moléculaire–silicium CMOS.
Molecular electronics is envisioned as a promising candidate for the nanoelectronics of the future. More than a possible answer to the ultimate miniaturization problem in nanoelectronics, molecular electronics is foreseen as a possible and reasonable way to assemble a large numbers of nanoscale objects (molecules, nanoparticles, nanotubes and nanowires) to form new devices and circuit architectures. It is also an interesting approach to significantly reduce the fabrication costs, as well as the energetical costs of computation, compared to usual semiconductor technologies. Moreover, molecular electronics is a field with a large spectrum of investigations: from quantum objects for testing new paradigms, to hybrid molecular-silicon CMOS devices.
Mot clés : Électronique moléculaire, Nanoélectronique, Dispositifs hybrides
Dominique Vuillaume 1
@article{CRPHYS_2008__9_1_78_0, author = {Dominique Vuillaume}, title = {Molecular-scale electronics}, journal = {Comptes Rendus. Physique}, pages = {78--94}, publisher = {Elsevier}, volume = {9}, number = {1}, year = {2008}, doi = {10.1016/j.crhy.2007.10.014}, language = {en}, }
Dominique Vuillaume. Molecular-scale electronics. Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 78-94. doi : 10.1016/j.crhy.2007.10.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.014/
[1] Supramolecular chemistry-scope and perspectives. Molecules, supermolecules and molecular devices (Nobel lecture), Angew. Chem. Int. Ed. Engl., Volume 27 (1988), pp. 89-112
[2] Tunneling through fatty acid salt monolayers, J. Appl. Phys., Volume 42 (1971) no. 11, pp. 4398-4405
[3] Molecular rectifiers, Chem. Phys. Lett., Volume 29 (1974) no. 2, pp. 277-283
[4] An Introduction to Ultrathin Organic Films: From Langmuir–Blodgett to Self-Assembly, Boston, Academic Press, 1991
[5] Rectifying characteristics of Mg/(C16H33-Q3CNQ LB film)/Pt structures, J. Chem. Soc. Chem. Commun., Volume 19 (1990), pp. 1374-1376
[6] Organic molecular rectifiers, Adv. Mater. Opt. Electron., Volume 5 (1995), pp. 305-320
[7] Molecular rectifier, Phys. Rev. Lett., Volume 70 (1993) no. 2, pp. 218-221
[8] Unimolecular electrical rectification in hexadecyquinolinium tricyanoquinodimethanide, J. Am. Chem. Soc., Volume 119 (1997) no. 43, pp. 10455-10466
[9] Electron transfer through a monolayer of hexadecylquinolinium tricyanoquinodimethanide, Langmuir, Volume 15 (1999) no. 11, pp. 4011-4017
[10] Rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide between gold electrodes, Angew. Chem. Int. Ed. Engl., Volume 40 (2001) no. 9, pp. 1749-1752
[11] Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes, J. Phys. Chem. B, Volume 105 (2001) no. 30, pp. 7280-7290
[12] Electronically configurable molecular-based logic gates, Science, Volume 285 (1999), pp. 391-394
[13] A [2]catenane-based solid state electronically reconfigurable switch, Science, Volume 289 (2000), pp. 1172-1175
[14] Switching devices based on interlocked molecules, Acc. Chem. Res., Volume 34 (2001) no. 6, pp. 433-444
[15] Nanoscale molecular-switch crossbar circuits, Nanotechnology, Volume 14 (2003), pp. 462-468
[16] Nanoscale molecular-switch devices fabricated by imprint lithography, Appl. Phys. Lett., Volume 82 (2003) no. 10, pp. 1610-1612
[17] Polar ligand adsorption controls semiconductor surface potentials, J. Am. Chem. Soc., Volume 116 (1994) no. 7, pp. 2972-2977
[18] Controlling surfaces and interfaces of semiconductors using organic molecules, Opt. Mat., Volume 9 (1998), pp. 394-400
[19] Molecular electronic tuning of Si surfaces, Chem. Phys. Lett., Volume 279 (1997), pp. 270-274
[20] R. Compano, L. Molenkamp, D.J. Paul, Technology roadmap for nanoelectronics, European Commission, IST Programme, Future and Emerging Technologies, Brussels, 2000
[21] Electronics using hybrid-molecular and monomolecular devices, Nature, Volume 408 (2000), pp. 541-548
[22] Structure and growth of self-assembling monolayers, Prog. Surf. Sci., Volume 65 (2000) no. 5–8, pp. 151-256
[23] J. Colloid Sci., 1 (1946), pp. 513-538
[24] On the formation and structure of self-assembling monolayers, J. Colloid Interface Sci., Volume 100 (1984) no. 2, pp. 465-496
[25] Evidence of a transition temperature for optimum deposition of grafted monolayer coatings, Nature, Volume 360 (1992), pp. 719-721
[26] Silanization of solid substrates: a step toward reproducibility, Langmuir, Volume 10 (1994) no. 11, pp. 4367-4373
[27] Evidence for a unique chain organization in long chain silane monolayers deposited on two widely different solid substrates, Langmuir, Volume 11 (1995) no. 7, pp. 2357-2360
[28] An intrinsic relationship between molecular structure in self-assembled n-alkylsiloxane monolayers and deposition temperature, J. Phys. Chem., Volume 98 (1994), pp. 7577-7590
[29] Electron transport through thin organic films in metal–insulator–metal junctions based on self-assembled monolayers, J. Am. Chem. Soc., Volume 123 (2001) no. 21, pp. 5075-5085
[30] Alkanethiol self-assembled monolayers as the dielectric of capacitors with nanoscale thickness, Appl. Phys. Lett., Volume 72 (1998) no. 14, pp. 1781-1783
[31] Effect of molecule–metal electronic coupling on through-bond hole tunneling across metal–organic monolayer–semiconductor junctions, J. Am. Chem. Soc., Volume 124 (2002) no. 12, pp. 2886-2887
[32] The importance of chemical bonding to the contact for tunneling through alkyl chains, J. Phys. Chem. B, Volume 106 (2002) no. 40, pp. 10432-10439
[33] Large on-off ratios and negative differential resistance in a molecular electronic device, Science, Volume 286 (1999), pp. 1550-1552
[34] Room-temperature negative differential resistance in nanoscale molecular junctions, Appl. Phys. Lett., Volume 77 (2000) no. 8, pp. 1224-1226
[35] Metal overlayer on organic functional groups of self-organized molecular assemblies. V. Ion scattering spectroscopy and X-ray photoelectron spectroscopy of Ag/COOH interfaces, J. Vac. Sci. Technol. A, Volume 13 (1995) no. 3, pp. 1275-1280
[36] Chemical and physical interactions at metal/self-assembled organic monolayer interfaces, Crit. Rev. Solid State Mater. Sci., Volume 191 (1994), pp. 1-54
[37] Interactions and penetration at metal/self-assembled organic monolayer interfaces, J. Vac. Sci. Technol. A, Volume 14 (1996) no. 3, pp. 1779-1787
[38] The interaction of vapor-deposited Al atoms with COOH groups at the surface of a self-assembled alkanethiolate monolayer on gold, J. Phys. Chem. B, Volume 104 (2000) no. 14, pp. 3267-3273
[39] Bond insertion, complexation and penetration pathways of vapor-deposited aluminium atoms with HO- and CH3O-terminated organic monolayers, J. Am. Chem. Soc., Volume 124 (2002) no. 19, pp. 5528-5541
[40] An in-situ X-ray photoelectron study of the interaction between vapor-deposited Ti atoms and functional groups at the surfaces of self-assembled monolayers, Surf. Sci., Volume 338 (1995), pp. 300-312
[41] Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi level pinning at the molecule–metal interface, J. Phys. Chem. B, Volume 110 (2006) no. 28, pp. 13947-13958
[42] A tunnel current in self-assembled monolayers of 3-mercaptopropyltrimethoxysilane, Small, Volume 1 (2005) no. 7, pp. 725-729
[43] Energetics of molecular interfaces, Mater. Today ( July/August 2005 ), pp. 32-41
[44] Electronic structure and electrical properties of interfaces between metals and pi-conjugated molecular films, J. Polymer Sci.: Part B: Polymer Phys., Volume 41 (2003), pp. 2529-2548
[45] N. Okazaki, J.R. Sambles. New fabrication technique and current–voltage properties of a Au/LB/Au structure, in: International Symposium on Organic Molecular Electronics, Nagoya, Japan, 2000
[46] Electrical contacts to molecular layers by nanotransfer printing, Nano Lett., Volume 3 (2003) no. 7, pp. 913-917
[47] Soft lithography, Angew. Chem. Int. Ed. Engl., Volume 37 (1998), pp. 550-575
[48] J. Am. Chem. Soc., 124 (2002), p. 7654
[49] Silicon–molecules–metal junctions by transfer printing: chemical synthesis and electrical properties, J. Phys. Chem. C, Volume 111 (2007) no. 22, pp. 7947-7956
[50] Soft contact deposition onto molecularly modified GaAs. Thin metal film flotation: principles and electrical effects, Adv. Func. Mater., Volume 12 (2002) no. 11–12, pp. 795-807
[51] Towards molecular electronics with large-area molecular junctions, Nature, Volume 441 (2006) no. 4, pp. 69-72
[52] Metal-free silicon–molecule–nanotube testbed and memory device, Nature Mater., Volume 5 (2006), pp. 63-68
[53] Effect of bond-length alternation in molecular wires, J. Am. Chem. Soc., Volume 124 (2002) no. 36, pp. 10654-10655
[54] Metal–molecule contacts and charge transport across monomolecular layers: measurement and theory, Phys. Rev. Lett., Volume 89 (2002) no. 8, p. 086802
[55] Electron transfer through organic molecules, J. Phys. Chem. B, Volume 103 (1999) no. 38, pp. 8122-8127
[56] Scanning tunneling spectroscopy of insulating self-assembled monolayers on Au(111), J. Phys. Chem. B, Volume 106 (2002) no. 34, pp. 8721-8725
[57] Formation of metal–molecule–metal tunnel junctions: Microcontacts to alkanethiol monolayers with a conducting AFM tip, J. Am. Chem. Soc., Volume 122 (2000) no. 12, pp. 2970-2971
[58] Fabrication and characterization of metal–molecule–metal junctions by conducting probe atomic force microscopy, J. Am. Chem. Soc., Volume 123 (2001), pp. 5549-5556
[59] Distance dependence of electron tunneling through self-assembled monolayers measured by conducting probe atomic force microscopy: unsaturated versus saturated molecular junctions, J. Phys. Chem. B (2002) (web 23-2-2002)
[60] Reproductible measurement of single-molecule conductivity, Science, Volume 294 (2001), pp. 571-574
[61] Role of stress on charge transfer through self-assembled alkanethiol monolayers on Au, Phys. Rev. Lett., Volume 86 (2001) no. 23, pp. 5357-5360
[62] Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: A route to molecular switching, Phys. Rev. Lett., Volume 86 (2001) no. 4, pp. 672-675
[63] Measurement of single-molecule resistance by repeated formation of molecular junctions, Science, Volume 301 (2003), pp. 1221-1223
[64] Variability of conductance in molecular junctions, J. Phys. Chem. B, Volume 110 (2006) no. 6, pp. 2462-2466
[65] Single-molecule circuits with well-defined molecular conductance, Nano Lett., Volume 6 (2006) no. 3, pp. 458-462
[66] Effect of anchoring groups on single-molecule conductance: comparative study of thiom-, amine-, and carboxylic-acid-terminated molecules, J. Am. Chem. Soc., Volume 128 (2006) no. 49, pp. 15874-15881
[67] Conductance of single alkanethiols: conduction mechanism and effect of molecule-electrode contacts, J. Am. Chem. Soc., Volume 128 (2006) no. 6, pp. 2135-2141
[68] Electronics and chemistry: varying single-molecule junction conductance using chemical substituents, Nano Lett., Volume 7 (2007) no. 2, pp. 502-506
[69] Dependence of single molecule junction conductance on molecular conformation, Nature, Volume 442 (2006), pp. 904-907
[70] Low-voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films, Appl. Phys. Lett., Volume 76 (2000) no. 14, pp. 1941-1943
[71] A nano-field effect transistor with an organic self-assembled monolayer as gate insulator, Appl. Phys. Lett., Volume 73 (1998) no. 18, pp. 2681-2683
[72] Low-operating-voltage organic transistors made of bifunctional self-assembled monolayers, Adv. Func. Mater., Volume 17 (2007), pp. 597-604
[73] Fabrication of co-planar metal–insulator–metal solid state nanojunction down to 5 nm, Eur. Phys. J. Appl. Phys., Volume 8 (1999) no. 2, pp. 139-145
[74] Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters, J. Vac. Sci. Technol. B, Volume 15 (1997) no. 4, pp. 793-799
[75] Fabrication of dissimilar metal electrodes with nanometer interelectrode distance for molecular electronic device characterization, J. Vac. Sci. Technol. B, Volume 18 (2000) no. 3, pp. 1177-1181
[76] Fabrication of metallic electrodes with nanometer separation by electromigration, Appl. Phys. Lett., Volume 75 (1999) no. 2, pp. 301-303
[77] Kondo effect in a single-molecule transistor, Nature, Volume 417 (2002), pp. 725-729
[78] Coulomb blockade and the Kondo effect in single-atom transistors, Nature, Volume 417 (2002), pp. 722-725
[79] Atom-size gaps and contacts between electrodes fabricated with a self-terminated electrochemical method, Appl. Phys. Lett., Volume 80 (2002) no. 13, pp. 2398-2400
[80] Quantized tunneling current in the metallic nanogaps formed by electrodeposition and etching, Appl. Phys. Lett., Volume 77 (2000) no. 24, pp. 3995-3997
[81] Nanometer-spaced electrodes with calibrated separation, Appl. Phys. Lett., Volume 80 (2002) no. 2, pp. 321-323
[82] Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules, Science, Volume 311 (2006), pp. 356-359
[83] Single-molecule devices as scaffolding for multicomponent nanostructure assembly, Nano Lett., Volume 7 (2007) no. 5, pp. 1119-1122
[84] Conductance of a molecular junction, Science, Volume 278 (1997), pp. 252-254
[85] Electron transport through a metal–molecule–metal junction, Phys. Rev. B, Volume 59 (1999) no. 19, pp. 12505-12513
[86] Driving current through single organic molecules, Phys. Rev. Lett., Volume 88 (2002) no. 17, p. 176804
[87] Electronic transport through single conjugated molecules, Chem. Phys., Volume 281 (2002), pp. 113-125
[88] A single-molecule diode, Proc. Natl. Acad. Sci. USA, Volume 102 (2005) no. 25, pp. 8815-8820
[89] Low-temperature conductance measurements on single molecules, Appl. Phys. Lett., Volume 82 (2003) no. 23, pp. 4137-4139
[90] Measurement of the conductance of single conjugated molecules, Nature, Volume 436 (2005), pp. 677-680
[91] Magnetic directed assembly of molecular junctions, Appl. Phys. Lett., Volume 86 (2005), p. 153105
[92] Molecularly inherent voltage-controlled conductance switching, Nature Mater., Volume 4 (2005), pp. 167-172
[93] Electron tunneling through fatty-acid monolayers, J. Appl. Phys., Volume 48 (1977) no. 6, pp. 2404-2407
[94] Electrical conduction through adsorbed monolayers, J. Chem. Phys., Volume 69 (1978) no. 5, pp. 1836-1847
[95] S. Lenfant, Monocouches organiques auto-assemblées pour la réalisation de diodes moléculaires, PhD, Univ. of Lille, 2001
[96] Mechanism of electron conduction in self-assembled alkanethiol monolayer devices, Phys. Rev. B, Volume 68 (2003), p. 035416
[97] Determination of performance on tunnel conduction through molecular wire using a conductive atomic force microscope, Appl. Phys. Lett., Volume 79 (2001) no. 22, pp. 3708-3710
[98] Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: Effects of metal work function and applied bias on tunneling efficiency and contact resistance, J. Am. Chem. Soc., Volume 126 (2004) no. 43, pp. 14287-14296
[99] Changes in the electronic properties of a molecule when it is wired into a circuit, J. Phys. Chem. B, Volume 106 (2002) no. 34, pp. 8609-8614
[100] Comparison of electronic transport measurements on organic molecules, Adv. Mat., Volume 15 (2003) no. 22, pp. 1881-1890
[101] Interface energy barrier determination from voltage dependence of photoinjected currents, J. Appl. Phys., Volume 41 (1970) no. 6, pp. 2424-2432
[102] Suppression of charge carrier tunneling through organic self-assembled monolayers, Phys. Rev. Lett., Volume 76 (1996) no. 25, pp. 4797-4800
[103] Electronic structure of alkylsiloxane self-assembled monolayer-silicon heterostructure, Phys. Rev. B, Volume 58 (1998) no. 24, pp. 16491-16498
[104] How do electronic carriers cross Si-bound alkyl monolayers?, Phys. Rev. Lett., Volume 95 (2005), p. 266897
[105] What is the barrier for tunneling through alkyl monolayers? Results from n– and p–Si–alkyl/Hg junctions, Adv. Mat., Volume 19 (2007), pp. 445-450
[106] The nature of electronic contact in self-assembled monolayers for molecular electronics: evidence of strong coupling, J. Phys. Chem. B, Volume 103 (1999) no. 42, pp. 8915-8919
[107] Contact resistance in metal–molecule–metal junctions based on aliphatic SAMs: Effects of surface linker and metal work function, J. Am. Chem. Soc., Volume 124 (2002) no. 38, pp. 11268-11269
[108] Vibronic contributions to charge transport across molecular junctions, Nano Lett., Volume 4 (2004), p. 643
[109] Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer, Nano Lett., Volume 4 (2004), p. 643
[110] Inelastic tunneling spectra of an alkyl self-assembled monolayer using a MOS tunnel junction as a test-bed, Microelectronic Engrg., Volume 80 (2005), pp. 398-401
[111] Role of interfaces on the direct tunneling and the inelastic tunneling behaviors through metal/alkylsilane/silicon junctions, Phys. Stat. Sol. (a), Volume 203 (2006) no. 6, pp. 1464-1469
[112] Vibronic coupling in semifluorinated alkanethiol junctions: Implications for selection rules in inelastic electron tunneling spectroscopy, Nano Lett., Volume 7 (2007) no. 5, pp. 1364-1368
[113] Effects of hydration on molecular junction transport, Nature Mater., Volume 5 (2006), pp. 901-908
[114] Measurement of current-induced local heating in a single molecule junction, Nano Lett., Volume 6 (2006) no. 6, pp. 1240-1244
[115] tunnel current noise through Si-bound alkyl monolayers, Phys. Rev. B, Volume 76 (2007), p. 205407
[116] Spin-dependent transport in molecular tunnel junctions, Phys. Rev. Lett., Volume 93 (2004) no. 13, p. 136601
[117] Spin-polarized inelastic tunneling spectroscopy of a molecular magnetic tunnel junction, Appl. Phys. Lett., Volume 89 (2006), p. 153105
[118] Are single molecular wires conducting?, Science, Volume 271 (1996), pp. 1705-1707
[119] Direct comparison of the electronic coupling efficiency of sulfur and selenium anchoring groups for molecules adsorbed onto gold electrodes, Chem. Phys., Volume 281 (2002), pp. 325-332
[120] Evidence of the key role of metal–molecule bonding in metal–molecule–metal transport experiments, Phys. Rev. Lett., Volume 91 (2003) no. 9, p. 096802
[121] Transport in nanoscale conductors from first principles, Phys. Rev. B, Volume 65 (2001), p. 045402
[122] Conductance of molecular wires: Influence of molecule–electrode binding, J. Am. Chem. Soc., Volume 121 (1999) no. 14, pp. 3428-3434
[123] Direct comparison of the electronic coupling efficiency of sulfur and selenium alligator clips for molecules adsorbed onto gold electrodes, Appl. Surf. Sci., Volume 212 (2003), pp. 446-451
[124] Thermoelectricity in molecular junction, Science, Volume 315 (2007), pp. 1568-1571
[125] The unimolecular rectifier: Unimolecular electronic devices are coming…, J. Mater. Chem., Volume 9 (1999), pp. 2027-2036
[126] The quest for unimolecular devices, New J. Chem., Volume 15 (1991), pp. 209-221
[127] Electrical rectification in a Langmuir–Blodgett monolayer of dimethyanilinoazafullerene sandwiched between gold electrodes, J. Phys. Chem. B, Volume 107 (2003) no. 4, pp. 1021-1027
[128] Rectification and nonlinear optical properties of a Langmuir–Blodgett monolayer of a pyridinium dye, J. Phys. Chem. B, Volume 106 (2002) no. 47, pp. 12158-12164
[129] Molecular diodes based on conjugated biblock co-oligomers, J. Am. Chem. Soc., Volume 124 (2002) no. 40, pp. 11862-11863
[130] Rectifying diodes from asymmetrically functionalized single-wall carbon nanotubes, J. Am. Chem. Soc., Volume 128 (2006), pp. 3134-3135
[131] Theory of electrical rectification in a molecular monolayer, Phys. Rev. B, Volume 64 (2001), p. 085405
[132] Do Aviram–Ratner diodes rectify?, J. Am. Chem. Soc., Volume 125 (2003) no. 13, pp. 3674-3675
[133] Current rectification by molecules with asymmetric tunneling barriers, Phys. Rev. B, Volume 66 (2002), p. 165436
[134] Theory of rectification in Tour wires: the role of electrode coupling, Phys. Rev. Lett., Volume 89 (2002) no. 13, p. 138301
[135] Current–voltage characteristics of self-assembled monolayers by scanning tunneling microscopy, Phys. Rev. Lett., Volume 79 (1997) no. 13, pp. 2530-2533
[136] Molecular rectifying diodes from self-assembly on silicon, Nano Lett., Volume 3 (2003) no. 6, pp. 741-746
[137] Evidence of switching and rectification by a single molecule effected with a scanning tunneling microscope, Chem. Phys. Lett., Volume 146 (1988) no. 6, pp. 490-495
[138] Errata on “Evidence of switching and rectification by a single molecule effected by a scanning tunneling microscope”, Chem. Phys. Lett., Volume 162 (1989) no. 4–5, p. 416
[139] Molecules for memory, logic, and amplification, J. Am. Chem. Soc., Volume 110 (1988), pp. 5687-5692
[140] Molecular random access memory cell, Appl. Phys. Lett., Volume 78 (2001) no. 23, pp. 3735-3737
[141] Conductance switching in single molecules through conformational changes, Science, Volume 292 (2001), pp. 2303-2307
[142] A bond-fluctuation mechanism for stochastic switching in wired molecules, Science, Volume 300 (2003) no. 5624, pp. 1413-1416
[143] Molecular-based electronically switchable tunnel junction devices, J. Am. Chem. Soc., Volume 123 (2001) no. 50, pp. 12632-12641
[144] A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter, Nature, Volume 445 (2007), pp. 414-417
[145] Molecule-independent electrical switching in Pt/organic monolayer/Ti devices, Nano Lett., Volume 4 (2004) no. 1, pp. 133-136
[146] Direct determination of the energy required to operate a single molecule switch, Phys. Rev. Lett., Volume 90 (2003) no. 6, p. 066107
[147] Capacitance and conductance characterization of ferrocene-containing self-assembled monolayers on silicon surfaces for memory applications, Appl. Phys. Lett., Volume 81 (2002) no. 8, pp. 1494-1496
[148] Characterization of charge storage in redox-active self-assembled monolayers, Langmuir, Volume 18 (2002) no. 10, pp. 4030-4040
[149] Measurements of electron-transfer rates of charge-storage molecular monolayers on Si(100). Towards hybrid molecular/semiconductor information storage devices, J. Am. Chem. Soc., Volume 125 (2003) no. 2, pp. 505-517
[150] Molecular memories that survive silicon device processing and real-world operation, Science, Volume 302 (2003), pp. 1543-1545
[151] Nonvolatile memory and programmable logic from molecule-gated nanowires, Nano Lett., Volume 2 (2002) no. 5, pp. 487-490
[152] Multilevel memory based on molecular devices, Appl. Phys. Lett., Volume 64 (2004) no. 11, pp. 1949-1951
[153] Data storage studies on nanowire transistors with self-assembled phorphyrin molecules, J. Phys. Chem. B, Volume 108 (2004) no. 28, pp. 9646-9649
[154] Optoelectronic switch and memory devices based on polymer-functionalized carbon nanotube transistors, Adv. Mat., Volume 18 (2006), pp. 2535-2540
[155] Nanotube optoelectronic memory devices, Nano Lett., Volume 4 (2004) no. 9, pp. 1587-1591
[156] RTD/HFET low standby power SRAM gain cell, IEEE Electron Device Lett., Volume 19 (1998) no. 1, pp. 7-9
[157] Room temperature negative differential resistance through individual organic molecules on silicon surfaces, Nano Lett., Volume 4 (2004) no. 1, pp. 55-59
[158] Silicon-based molecular electronics, Nano Lett., Volume 4 (2004) no. 10, pp. 1803-1807
[159] Detailed studies of molecular conductance using atomic resolution scanning tunneling microscopy, Nano Lett., Volume 6 (2006) no. 3, pp. 390-397
[160] Negative differential resistance in transport through organic molecules on silicon, Phys. Rev. Lett., Volume 98 (2007), p. 066807
[161] Stochastic assembly of sublithographic nanoscale interfaces, IEEE Trans. Nanotechnol., Volume 2 (2003) no. 3, pp. 165-174
[162] Nanocell logic gates for molecular computing, IEEE Trans. Nanotechnol., Volume 1 (2002) no. 2, pp. 100-109
[163] CMOL: Devices, circuits and architectures (G. Cuniberti, ed.), Introduction to Molecular Electronics, Springer, 2005, pp. 447-477
[164] S.C. Goldstein and M. Budiu, Nanofabrics: spatial computing using molecular electronics, in: Int. Symp. on Computer Architecture, 2001
[165] Charge transfer on the nanoscale: Currents status, J. Phys. Chem. B, Volume 107 (2003) no. 28, pp. 6668-6697
[166] Electron transmission through molecules and molecular interfaces, Annu. Rev. Phys. Chem., Volume 52 (2001), p. 681
[167] Electron transport in molecular junctions, Nature Nanotechnol., Volume 1 (2006), pp. 173-181
[168] Electron transport in molecular wire junctions, Science, Volume 300 (2003) no. 5624, pp. 1384-1389
Cité par Sources :
Commentaires - Politique