Comptes Rendus
Optical fiber transport systems and networks: fundamentals and prospects
Comptes Rendus. Physique, Volume 9 (2008) no. 9-10, pp. 914-934.

This article presents first the history of the optical fiber transport networks, from the introduction of the first high capacity systems in the 1990s to the 10 Gbit/s per channel WDM (Wavelength Division Multiplexing) systems deployed today, and the tremendous evolution of performance within this period. The effects of propagation in optical fibers and their consequences for optical system engineering, the architecture of today's optical transport networks, the choices made in France are recalled. We then have a look at the future of optical transport networks from an operator's point of view: the expected evolutions in terms of transmission system capacity and network architecture are presented. We conclude that capacity, transparency, and agility are the main drivers of the evolution of optical fiber transport systems and networks and that a lot of changes have yet to be expected in these domains during the next decade.

Cet article présente d'abord l'histoire des réseaux de transport à fibre optique, depuis l'introduction des premiers systèmes à grande capacité dans les années 1990, jusqu'aux systèmes actuels utilisant le multiplexage en longueur d'onde (WDM) à 10 Gbit/s par canal, et l'évolution fantastique des performances durant cette période. Les effets liés à la propagation dans les fibres et leurs conséquences sur l'ingénierie des systèmes optiques, l'architecture des réseaux de transport optiques actuels, les choix faits en France sont rappelés. Nous examinons ensuite l'avenir des réseaux de transport optiques du point de vue de l'opérateur : les évolutions attendues en termes de capacité des systèmes de transmission et d'architecture de réseaux sont présentées. Nous concluons que capacité, transparence et agilité sont les principaux moteurs de l'évolution des systèmes et réseaux de transport à fibre optique et que beaucoup de changements sont encore attendus dans ces domaines durant la prochaine décennie.

Published online:
DOI: 10.1016/j.crhy.2008.10.003
Keywords: Optical fiber, Transport networks, Submarine cables, Wavelength Division Multiplexing
Mot clés : Fibre optique, Réseaux de transport, Câbles sous-marins, Multiplexage en longueur d'onde

Michel Joindot 1; Stéphane Gosselin 2

1 CNRS FOTON ENSSAT, Université de Rennes 1, 6, rue de Kerampont, 22305 Lannion, France
2 Orange Labs, 2, avenue Pierre Marzin, 22307 Lannion cedex, France
@article{CRPHYS_2008__9_9-10_914_0,
     author = {Michel Joindot and St\'ephane Gosselin},
     title = {Optical fiber transport systems and networks: fundamentals and prospects},
     journal = {Comptes Rendus. Physique},
     pages = {914--934},
     publisher = {Elsevier},
     volume = {9},
     number = {9-10},
     year = {2008},
     doi = {10.1016/j.crhy.2008.10.003},
     language = {en},
}
TY  - JOUR
AU  - Michel Joindot
AU  - Stéphane Gosselin
TI  - Optical fiber transport systems and networks: fundamentals and prospects
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 914
EP  - 934
VL  - 9
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2008.10.003
LA  - en
ID  - CRPHYS_2008__9_9-10_914_0
ER  - 
%0 Journal Article
%A Michel Joindot
%A Stéphane Gosselin
%T Optical fiber transport systems and networks: fundamentals and prospects
%J Comptes Rendus. Physique
%D 2008
%P 914-934
%V 9
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2008.10.003
%G en
%F CRPHYS_2008__9_9-10_914_0
Michel Joindot; Stéphane Gosselin. Optical fiber transport systems and networks: fundamentals and prospects. Comptes Rendus. Physique, Volume 9 (2008) no. 9-10, pp. 914-934. doi : 10.1016/j.crhy.2008.10.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.10.003/

[1] M. Joindot State of the art and future of WDM transmission, Annals of Telecommunications, Volume 58 (2003), pp. 1725-1756

[2] P. Vandamme, M. Joindot, S. Gosselin, L'optique et les réseaux de transport, in : Les communications optiques du futur, Conférences France Télécom Recherche, vol. 19, 2002, pp. 7–27

[3] G. Charlet; S. Bigo Upgrading WDM submarine systems to 40-Gbit/s channel bitrate, Proceedings of the IEEE, Volume 94 (2006), pp. 935-951

[4] E. Desurvire Erbium Doped Fiber Amplifiers: Principles and Applications, Wiley, New York, 1996

[5] E. Desurvire Capacity demand and technology challenges for lightwave systems in the next two decades, IEEE Journal of Lightwave Technology, Volume 24 (2006), pp. 4697-4710

[6] D. Bayart Optical fiber amplification technology, Annals of Telecommunications, Volume 58 (2003), pp. 1603-1639

[7] T. Mizuochi Recent progress in forward error correction and its interplay with transmission impairments, IEEE Journal on Selected Topics in Quantum Electronics, Volume 12 ( July/August 2006 )

[8] T. Mizuochi Recent progress in forward error correction for optical communication systems, IEICE Transactions on Communications, Volume E88-B ( May 2005 )

[9] http://www.lightreading.com/document.asp?doc_id=11991&site=ofc

[10] A.H. Gnauck, et al., 25.6-Tb/s C+L-band transmission of polarization-multiplexed RZ-DQPSK signals, in: Optical Fibre Communication Conference, 2007, p. PDP19

[11] G. Charlet, et al., Transmission of 16.4 Tbit/s Capacity over 2,550 km using PDM QPSK modulation format and coherent receiver, in: Optical Fibre Communication Conference, 2008, PDP9

[12] S. Namiki, et al., Challenges of Raman amplification, in: Proceedings of the IEEE 94, May 2006

[13] P.J. Winzer, R.J. Essiambre, advanced modulation formats, in: European Conference on Optical Communication, 2007, tutorial 6.2.1

[14] P. Nouchi et al. Optical communication and fiber design, Annals of Telecommunications, Volume 58 (2003), pp. 1586-1602

[15] F. Matera; M. Settembre Performance Evaluation of Optical Systems Operating on Long Fiber Links, Springer, 1995

[16] G.P. Agrawal Non Linear Fiber Optics, Academic Press, San Diego, 1989

[17] H. Kogelnik; R.M. Jopson; L.E. Nelson Optical Fiber Communications, vol. IVb (I. Kaminow, ed.), CA Academic, 2002, pp. 745-762

[18] E. Forestieri; L. Vincetti Exact evaluation of the Jones matrix of a fiber in the presence of polarization mode dispersion with any order, IEEE Journal of Lightwave Technology, Volume 19 (2001), pp. 1898-1909

[19] M. Karlsson Polarization mode dispersion induced pulse broadening in optical fibers, Optics Letters, Volume 23 (1998), pp. 688-690

[20] E. Forestieri Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre and post detection filtering, IEEE Journal of Lightwave Technology, Volume 18 (2000), pp. 1493-1503

[21] G.J. Foschini et al. Statistics of second order PMD depolarization, IEEE Journal of Lightwave Technology, Volume 12 (1991), pp. 1882-1886

[22] G.J. Foschini; C.D. Poole Statistical theory of polarization dispersion in single mode fibers, IEEE Journal of Lightwave Technology, Volume 9 ( November 1991 )

[23] S. Lanne; E. Corbel Practical considerations for optical polarization mode dispersion compensators, IEEE Journal of Lightwave Technology, Volume 22 (2004), pp. 1033-1040

[24] P. Winzer, R.J. Essiambre, Advanced optical modulation formats, in: Proceedings of the IEEE 94, May 2006

[25] G. Charlet Progress in optical modulation formats for high bit rate wdm transmissions, IEEE Journal on Selected Topics in Quantum Electronics, Volume 12 ( July/August 2006 )

[26] T. Kupfer, et al., Performance of MLSE in optical communication systems, invited paper, in: European Conference on Optical Communication, Berlin, 2007, session 9.1

[27] E. Desurvire et al. Erbium Doped Fiber Amplifiers, Device and System Developments, Wiley Interscience, 2002

[28] R. Schlipf et al. Design and analysis of a control system for an optical delay-line circuit used as reconfigurable gain equalizer, IEEE Journal of Lightwave Technology, Volume 21 (2003), pp. 1944-1952

[29] S. Bigo et al. Design of multi-terabit/s terrestrial systems facilitated by simple analytical tools, Annals of Telecommunications, Volume 58 (2003), pp. 1757-1783

[30] A. Hodzics, Investigation of high bitrate optical transmission systems employing a channel data rate of 40 Gb/s, Dr Ingenieur thesis, Technische Universität Berlin, July 2004

[31] D. Delisle, C. Guillemot, F. Tillerot, Commande et couche optique, in : Les communications optiques du futur, in : Conférences France Télécom Recherche, vol. 19, 2002, pp. 29–56

[32] A. Gladisch, et al., Evolution of terrestrial optical systems and core network architecture, in: Proceedings of the IEEE 94, 2006, pp. 869–891

[33] B. Ramamurthy, et al., Transparent vs. opaque vs. translucent wavelength-routed optical networks, in: Optical Fiber Communication Conference, 1999, TuF2

[34] B. Ramamurthy et al. Impact of transmission impairments on the teletraffic performance of wavelength-routed optical networks, IEEE Journal of Lightwave Technology, Volume 17 (1999), pp. 1713-1723

[35] G. Shen; R.S. Tucker Translucent optical networks: the way forward, IEEE Communication Magazine ( February 2007 ), pp. 48-54

[36] M. Fuller http://lw.pennnet.com/display_article/139027/13/ARTCL/none/none/1/PhotonEx's-40-Gbit/sec-system/ PhotonEx's 40-Gbit/sec system, Lightwave (March 2002)

[37] E. Lach, et al., DWDM Transmission at ultra high channel bitrates: European TOPRATE project view, in: European Conference on Optical Communication, 2004, Tu1.1.2

[38] G. Raybon, P. Winzer, 100 Gb/s challenges and solutions, in: Optical Fiber Communication Conference, 2008, OTuG1

[39] J. Hongo; K. Kasai; Y. Yoshida; M. Nakazawa 1 Gsymbol/s 64QAM Coherent Optical Transmission over 150 km, IEEE Photonics Technology Letters, Volume 19 (2007), pp. 638-640

[40] P.J. Winzer, A. Gnauck, 112 Gb/s polarization multiplexed 16 QAM on a 25 GHz grid, in: European Conference on Optical Communication, Bruxelles, 2008, Th.3.E.5

[41] L.G. Kazovsky; G. Kalogerakis Homodyne phase shift keying systems: past challenges and future opportunities, IEEE Journal of Lightwave Technology, Volume 24 (2006), pp. 4876-4884

[42] D.S. Ly Gagnon et al. Coherent detection of optical quadrature phase shift keying signals with coherent phase estimation, IEEE Journal of Lightwave Technology, Volume 24 (2006), pp. 12-21

[43] A. Leven et al. Real-time implementation of 4.4 Gbit/s QPSK intradyne receiver using field programmable gate array, Electronics Letters, Volume 42 (2006), pp. 1421-1422

[44] G. Charlet Coherent detection associated with digital signal processing for fiber optics communications, C. R. Physique, Volume 9 (2008) no. 9–10, pp. 1012-1030

[45] C. Laperle, et al., Wavelength Division Multiplexing (WDM) and Polarization Mode Dispersion (PMD) performance of a coherent 40 Gbit/s Dual Polarization Quadrature Phase Shift Keying (DP-QPSK) transceiver, in: Optical Fiber Communication Conference, 2007, PDP16

[46] W. Tomlinson, Wavelength-selective switching – architecture and technology overview, in: Optical Fiber Communication Conference, 2004, pp. 23–27

[47] L. Zong, et al., Study on wavelength cross-connect realized with wavelength selective switches, in: Optical Fiber Communication Conference, 2006, NThC3

[48] G. Ellinas et al. Network control and management challenges in opaque networks utilizing transparent optical switches, IEEE Communications Magazine ( February 2004 ), p. S16-S24

[49] J. Lang, Link Management Protocol (LMP), Internet engineering task force, 2005, RFC 4204

[50] A. Fredette, J. Lang, Link Management Protocol (LMP) for Dense Wavelength Division Multiplexing (DWDM) optical line systems, in: Internet Engineering Task Force, 2005, RFC 4209

[51] M.-F. Huang, et al., Cascaded reconfigurable optical add/drop multiplexer (ROADM) in metro add/drop network applications, in: Conference on Lasers and Electro-Optics, Quantum Electronics and Laser Science Conference, 2006, CWQ5

[52] J.B.D. Soole, et al., Multipurpose Reconfigurable optical Add-Drop Multiplexer (ROADM), in: European Conference on Optical Communication, 2002, PD3.3

[53] C.A. Al Sayeed, A. Vukovic, O.W.W. Yang, Performance optimization of PLC-based ROADM subsystem in ring-to-ring interconnection, in: IEEE International Conference on Communications, 2006, pp. 2764–2769

[54] M.W. Maeda Management and control of transparent optical networks, IEEE Journal on Selected Areas in Communications, Volume 16 (1998), pp. 1008-1023

[55] http://www.ietf.org/iesg/1rfc_index.txt

[56] http://www.itu.int/ITU-T/index.html

[57] http://www.oiforum.com/

[58] D. Papadimitriou; D. Verchere GMPLS user-network interface in support of end-to-end rerouting, IEEE Communications Magazine ( July 2005 ), pp. 35-43

[59] T.D. Nadeau; H. Rakotoranto GMPLS operations and management: today's challenges and solutions for tomorrow, IEEE Communications Magazine ( July 2005 ), pp. 68-74

[60] H.-M. Foisel et al. Global seamless network demonstrator: a comprehensive ASON/GMPLS testbed, IEEE Communications Magazine ( November 2005 ), p. S34-S39

[61] A. Jourdan et al. The perspective of optical packet switching in IP-dominant backbone and metropolitan networks, IEEE Communication Magazine ( March 2001 ), pp. 136-141

[62] M.J. O'Mahony The application of optical packet switching in future communication networks, IEEE Communication Magazine ( March 2001 ), pp. 128-135

[63] T.S. El-Bawab; J.-D. Shin Optical packet switching in core networks: between vision and reality, IEEE Communication Magazine ( September 2002 ), pp. 60-65

[64] C. Develder et al. Benchmarking and viability assessment of optical packet switching for metro networks, IEEE Journal of Lightwave Technology, Volume 22 (2004), pp. 2435-2451

[65] C. Qiao Labeled optical burst switching for IP-over-WDM integration, IEEE Communication Magazine ( September 2000 ), pp. 104-114

[66] Y. Chen; C. Qiao; X. Yu Optical burst switching: a new area in optical networking research, IEEE Network ( May/June 2004 ), pp. 16-23

[67] S.J. Ben Yoo Optical packet and burst switching technologies for the future photonic internet, IEEE Journal of Lightwave Technology, Volume 24 (2006), pp. 4468-4492

Cited by Sources:

Comments - Policy