Comptes Rendus
Challenges and advances of photonic integrated circuits
[Enjeux et avancées des circuits photoniques intégrés]
Comptes Rendus. Physique, Recent advances in optical telecommunications / Avancées récentes en télécommunications optiques, Volume 9 (2008) no. 9-10, pp. 1055-1066.

L'idée des circuits photoniques intégrés (PICs) apparue dans les années 1970 a connu des premières réalisations à partir des années 1980 avec par exemple le premier laser – modulateur. Mais récemment, en raison d'une part de la demande pour des débits élevés (100 Gb/s) avec des coûts et une consommation toujours plus faibles, et d'autre part de la maturité des procédés de fabrication des composants optoélectroniques semi-conducteurs, des PICs extrêmement complexes sont développés, et produits industriellement. Cette intégration dense représente un saut technologique important, et a un fort impact sur les systèmes de communications optiques avec par exemple la possibilité de nouveaux formats de modulation, ou de nœuds optiques / électroniques / optiques à un coût abordable. Cet article présente les défis technologiques liés aux PICs, et les principales réalisations.

The idea of Photonic Integrated Circuits (PICs) appeared in the 1970s, had first achievements in the 1980s with, for example, a laser–modulator. However, recently, due to the demand for increasing bandwidth (100 Gb/s) at lower cost and consumption, and due to semiconductor optoelectronics processing maturity, extremely complex PICs have been developed and industrially produced. This dense integration is an important technological breakthrough, and has a strong impact on optical communication systems with for example cost-effective O/E/O nodes, or transmissions with new modulation formats. This article presents the technological challenges related to PICs, and the major realizations made, up to today.

Publié le :
DOI : 10.1016/j.crhy.2008.10.004
Keywords: Photonic integrated circuit
Mots-clés : Circuit photonique intégré

Hélène Debrégeas-Sillard 1 ; Christophe Kazmierski 1

1 Alcatel-Thales III-V Lab , Route de Nozay, 91460 Marcoussis, France
@article{CRPHYS_2008__9_9-10_1055_0,
     author = {H\'el\`ene Debr\'egeas-Sillard and Christophe Kazmierski},
     title = {Challenges and advances of photonic integrated circuits},
     journal = {Comptes Rendus. Physique},
     pages = {1055--1066},
     publisher = {Elsevier},
     volume = {9},
     number = {9-10},
     year = {2008},
     doi = {10.1016/j.crhy.2008.10.004},
     language = {en},
}
TY  - JOUR
AU  - Hélène Debrégeas-Sillard
AU  - Christophe Kazmierski
TI  - Challenges and advances of photonic integrated circuits
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 1055
EP  - 1066
VL  - 9
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2008.10.004
LA  - en
ID  - CRPHYS_2008__9_9-10_1055_0
ER  - 
%0 Journal Article
%A Hélène Debrégeas-Sillard
%A Christophe Kazmierski
%T Challenges and advances of photonic integrated circuits
%J Comptes Rendus. Physique
%D 2008
%P 1055-1066
%V 9
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2008.10.004
%G en
%F CRPHYS_2008__9_9-10_1055_0
Hélène Debrégeas-Sillard; Christophe Kazmierski. Challenges and advances of photonic integrated circuits. Comptes Rendus. Physique, Recent advances in optical telecommunications / Avancées récentes en télécommunications optiques, Volume 9 (2008) no. 9-10, pp. 1055-1066. doi : 10.1016/j.crhy.2008.10.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.10.004/

[1] Heavy Reading, Photonic integration & the future of optical networking, vol. 6, No. 3, March 2008

[2] L.B. Soldano; E.C.M. Pennings Optical multi-mode interference devices based on self-imaging: principles and applications, Journal of Lightwave Technology, Volume 13 ( April 1995 ) no. 4 (invited paper)

[3] E.J. Skogen et al. Monolithically integrated active components: a quantum-well intermixing approach, IEEE Journal of Selected Topics in Quantum Electronics, Volume 11 ( March/April 2005 ) no. 2

[4] J. Décobert et al. Modeling and characterization of AlGaInAs and related materials using selective area growth by metal-organic vapor-phase epitaxy, Journal of Crystal Growth, Volume 298 (2007), pp. 28-31

[5] C.R. Doerr, InP-based photonic devices, in: Optical Fiber Communication Conference 2008, tutorial OWE3

[6] M. Suzuki et al. Monolithic integration of InGaAsP/InP distributed feedback laser and electroabsorption modulator by vapour phase epitaxy, Journal of Lightwave Technology LT-, Volume 5 ( September 1987 ) no. 9

[7] J. Lin et al. High-speed low-loss Schottky-i-n InP-based optical modulator for RF photonics, IEEE Photonics Technology Letters, Volume 19 ( March 2007 ) no. 5

[8] C. Jany et al., Semi-insulating buried heterostructure 1.55 μm InGaAlAs electro-absorption modulated laser with 60 GHz bandwidth, in: European Conference on Optical Communication 2007, PD2.7

[9] Y.A. Akulova et al. Widely tunable electroabsorption-modulated sampled grating DBR laser transmitter, IEEE Journal of Selected Topics in Quantum Electronics, Volume 8 ( November/December 2002 ) no. 6

[10] J.S. Barton et al. A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach–Zehnder modulator, IEEE Journal of Selected Topics in Quantum Electronics, Volume 9 ( September/October 2003 ) no. 5

[11] T.L. Koch et al. High-performance tunable 1.5 μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers, Applied Physics Letters, Volume 53 (1988), pp. 1036-1038

[12] H. Debrégeas-Sillard et al. DBR module with 20 mW constant coupled output power, over 16 nm (40 channels 50 GHz spaced), IEEE Photonics Technology Letters, Volume 13 ( January 2001 ) no. 1, pp. 4-6

[13] B. Mason et al. Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers, IEEE Photonics Technology Letters, Volume 12 ( July 2000 ) no. 7, pp. 762-764

[14] A.J. Ward et al. Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance, IEEE Journal of Selected Topics in Quantum Electronics, Volume 11 ( January/February 2005 ) no. 1

[15] J.-O. Wesström et al., Design of a widely tunable modulated grating Y-branch laser using the additive Vernier effect for improved super-mode selection, in: International Semiconductor Laser Conference 2002, TuP16

[16] H. Debrégeas-Sillard et al., More than 40 nm tuning DBR-MMI-SOA with only one Bragg current control compatible with fast switching, European Conference on Optical Communication 2007, paper 9.2.4

[17] H. Ishii et al., High-power (40 mW) full C-band wavelength tunable DFB laser array integrated with Funnel combiner, International Semiconductor Laser Conference 2006, TuA4

[18] O.K. Kwon et al. Widely tunable multichannel grating cavity laser, IEEE Photonics Technology Letters, Volume 18 ( August 2006 ) no. 16, pp. 1699-1701

[19] C.R. Doerr et al. 40-wavelength rapidly digitally tunable laser, IEEE Photonics Technology Letters, Volume 11 ( November 1999 ) no. 11, pp. 1348-1350

[20] D. Van Thourhout et al. Compact digitally tunable laser, IEEE Photonics Technology Letters, Volume 15 ( February 2003 ) no. 2, pp. 182-184

[21] R. Nagarajan et al. Large-scale photonic integrated circuits, IEEE Journal of Selected Topics in Quantum Electronics, Volume 11 ( January/February 2005 ) no. 1, pp. 50-65

[22] D.F. Welch et al. Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks, IEEE Journal of Selected Topics in Quantum Electronics, Volume 13 ( January/February 2007 ) no. 1, pp. 22-31

[23] T. Kawanishi et al., 80 Gb/s DQPSK modulator, in: Optical Fiber Communication Conference 2007, OWH5

[24] M. Kato et al., InP integrated photonic circuits for digital optical networking, in: Opto-Electronics and Communications Conference 2008

[25] C.R. Doerr et al., Compact EAM-based InP DQPSK modulator and demonstration at 80 Gb/s, in: Optical Fiber Communication Conference 2007, PDP33

[26] C.R. Doerr, et al., Monolithic InP DQPSK 53.5 Gb/s receiver, in: European Conference on Optical Communications 2007, PD2.9

[27] V. Lal et al. Monolithic wavelength converters for high-speed packet-switched optical networks, IEEE Journal of Selected Topics in Quantum Electronics, Volume 13 ( January/February 2007 ) no. 1, pp. 49-57

[28] J.W. Raring et al., Single-chip 40 Gb/s widely-tunable transceiver with integrated SG-DBR laser, QW EAM, UTC photodiode, and low confinement SOA, in: International Semiconductor Laser Conference 2006

[29] D. Van Thourhout et al. Novel geometry for an integrated channel selector, IEEE Journal of Selected Topics in Quantum Electronics, Volume 8 ( November/December 2002 ) no. 6, pp. 1211-1214

[30] R. Broeke et al., All-optical wavelength converter with a monolithically integrated digitally tunable laser, in: European Conference on Optical Communication 2002, PD3.2

  • Chensheng Wang; Wenhao Wu; Zhenhua Wang; Zhijie Zhang; Wei Xiong; Leimin Deng Integrated Photonic Processor Implementing Digital Image Convolution, Electronics, Volume 14 (2025) no. 4, p. 709 | DOI:10.3390/electronics14040709
  • Xiao Sun; Zhibo Li; Yizhe Fan; Mohanad Jamal Al-Rubaiee; John H. Marsh; Anthony E. Kelly; Stephen J. Sweeney; Lianping Hou Multi-wavelength DFB laser based on a sidewall third-order four phase-shifted sampled Bragg grating with uniform wavelength spacing, Optics Letters, Volume 50 (2025) no. 3, p. 714 | DOI:10.1364/ol.542734
  • Yiming Sun; Simeng Zhu; Bocheng Yuan; Yizhe Fan; Mohanad Al-Rubaiee; Xiao Sun; John H. Marsh; Stephen J. Sweeney; Lianping Hou Continuous phase modulation technology based on grating period interval for high grating coupling coefficient and precise wavelength control, Optics Letters, Volume 50 (2025) no. 3, p. 750 | DOI:10.1364/ol.543872
  • M.A. Butt; B. Janaszek; R. Piramidowicz Lighting the way forward: The bright future of photonic integrated circuits, Sensors International, Volume 6 (2025), p. 100326 | DOI:10.1016/j.sintl.2025.100326
  • Yiming Sun; Bocheng Yuan; Xiao Sun; Song Liang; Yongguang Huang; Ruikang Zhang; Shengwei Ye; Yizhe Fan; Weiqing Cheng; John H. Marsh; Lianping Hou DFB laser array based on four phase-shifted sampled Bragg gratings with precise wavelength control, Optics Letters, Volume 47 (2022) no. 23, p. 6237 | DOI:10.1364/ol.475909
  • Elisabet A. Rank; Anja Agneter; Tilman Schmoll; Rainer A. Leitgeb; Wolfgang Drexler Miniaturizing optical coherence tomography, Translational Biophotonics, Volume 4 (2022) no. 1-2 | DOI:10.1002/tbio.202100007
  • Asesh Kumar Tripathy; Sukanta Kumar Tripathy; Susanta Kumar Das Multifunctional holographic gratings for simultaneous coupling and beam splitting applications in photonic integrated circuits, International Journal of Information Technology, Volume 13 (2021) no. 1, p. 307 | DOI:10.1007/s41870-020-00548-z
  • Lianping Hou; Song Tang; John H. Marsh Monolithic DWDM source with precise channel spacing, Journal of Semiconductors, Volume 42 (2021) no. 4, p. 042301 | DOI:10.1088/1674-4926/42/4/042301
  • Aneesh Dash; P. R. Yasasvi Gangavarapu; Vadivukkarasi Jeyaselvan; Viphretuo Mere; A. K. Naik; Siddharth Nambiar; S. K. Selvaraja, 2019 IEEE 16th International Conference on Group IV Photonics (GFP) (2019), p. 1 | DOI:10.1109/group4.2019.8853869
  • Aneesh Dash; P. R. Yasasvi Gangavarapu; Siddharth Nambiar; Vadivukkarasi Jeyaselvan; Viphretuo Mere; S. K. Selvaraja; A. K. Naik, 2019 IEEE 16th International Conference on Group IV Photonics (GFP) (2019), p. 1 | DOI:10.1109/group4.2019.8926124
  • Aneesh Dash; P.R. Yasasvi Gangavarapu; S.R. Nambiar; S.K. Selvaraja; A.K. Naik Transparent on-waveguide electrical interconnects in SiN-photonic platform, Optics Communications, Volume 444 (2019), p. 28 | DOI:10.1016/j.optcom.2019.03.063
  • Lianping Hou; Junjie Xu; Iain Eddie; Liangshun Han; Hongliang Zhu; John H. Marsh, Conference on Lasers and Electro-Optics (2016), p. SW4M.1 | DOI:10.1364/cleo_si.2016.sw4m.1
  • Ming Li; Xiangfei Chen; Yikai Su; Xingjun Wang; Minghua Chen; Daoxin Dai; Jianguo Liu; Ning Hua Zhu Photonic Integration Circuits in China, IEEE Journal of Quantum Electronics, Volume 52 (2016) no. 1, p. 1 | DOI:10.1109/jqe.2015.2504087
  • Junshou Zheng; Yuechun Shi; Yunshan Zhang; Jilin Zheng; Jun Lu; Xiangfei Chen Monolithically Integrated Four-Channel DFB Semiconductor Laser Array With an Equivalent-Distributed Coupling Coefficient, IEEE Photonics Journal, Volume 7 (2015) no. 3, p. 1 | DOI:10.1109/jphot.2015.2420621
  • Yuechun Shi; Simin Li; Lianyan Li; Renjia Guo; Tingting Zhang; Liu Rui; Weichun Li; Linlin Lu; Tang Song; Yating Zhou; Jingsi Li; Xiangfei Chen Study of the Multiwavelength DFB Semiconductor Laser Array Based on the Reconstruction-Equivalent-Chirp Technique, Journal of Lightwave Technology, Volume 31 (2013) no. 20, p. 3243 | DOI:10.1109/jlt.2013.2280715
  • Ling-Xiu Zou; Xiao-Meng Lv; Yong-Zhen Huang; Heng Long; Qi-Feng Yao; Yun Du Four-wavelength Microdisk Lasers Laterally Coupling to an Output Bus Waveguide, Optics and Photonics Journal, Volume 03 (2013) no. 02, p. 66 | DOI:10.4236/opj.2013.32b016
  • Jie Hou; Xiangfei Chen; Lixian Wang; Wei Chen; Ninghua Zhu A Method of Adjusting Wavelengths of Distributed Feedback Laser Arrays by Injection Current Tuning, IEEE Photonics Journal, Volume 4 (2012) no. 6, p. 2189 | DOI:10.1109/jphot.2012.2228183
  • Yuechun Shi; Xiangfei Chen; Yating Zhou; Simin Li; Linlin Lu; Rui Liu; Yijun Feng Experimental demonstration of eight-wavelength distributed feedback semiconductor laser array using equivalent phase shift, Optics Letters, Volume 37 (2012) no. 16, p. 3315 | DOI:10.1364/ol.37.003315
  • Chee-Wei Tan; Qing-Xin Zhang; Calvin Wei-Liang Teo; Li-Shiah Lim; Ming-Bin Yu; Patrick Lo, 2010 Photonics Global Conference (2010), p. 1 | DOI:10.1109/pgc.2010.5706088

Cité par 19 documents. Sources : Crossref

Commentaires - Politique