[Un débit binaire de 100 Gigabit/s pour la prochaine génération de réseaux de télécommunications optiques]
Les réseaux de télécommunications modernes doivent disposer d'énormes capacités de transport de données pour pouvoir accompagner les taux de croissances annuels toujours vertigineux du trafic Internet. Aujourd'hui, notamment, certains nœuds d'échange Internet peuvent présenter une croissance annuelle de leur trafic pic de plus de 200% en raison de l'émergence soutenue de services de données de vidéo large-bande. Cette explosion du trafic de données internet et de la vidéo n'est rendue possible que grâce à l'implémentation des technologies les plus avancées de réseaux optiques métropolitains et de cœur. Il est d'ailleurs probable que la future génération de réseaux de transport sera basée sur des interconnections 100 Gigabit/s Ethernet (100 GbE). Dans cet article, nous décrivons les défis techniques ainsi que les principales réalisations associés au développement de composants et de systèmes à ultra-haut débit, permettant de la transmission optique en série à 100 Gb/s.
Modern telecommunication networks have to provide enormous data transport capacity in order to enable the dramatic annual internet traffic growth rates. As an illustration, today some internet exchange nodes partly exhibit annual peak traffic growth rates of more than 200% due to strongly emerging data and broadband video services. This explosion of internet data and video traffic can only be assured by the implementation of the most advanced optical metro and core transport network technologies. It is likely that next generation telecommunication transport networks will be based on 100 Gigabit/s Ethernet (100 GbE) interconnections. Here we will report on the technical challenges and achievements associated with the development of ultra-high speed components and systems for serial 100 Gbit/s optical transmission.
Mots-clés : Transmission optique haut débit, Fibre optique, Réseaux de transport optiques
Gustav Veith 1 ; Eugen Lach 1 ; Karsten Schuh 1
@article{CRPHYS_2008__9_9-10_1002_0, author = {Gustav Veith and Eugen Lach and Karsten Schuh}, title = {100 {Gigabit-per-second:} {Ultra-high} transmission bitrate for next generation optical transport networks}, journal = {Comptes Rendus. Physique}, pages = {1002--1011}, publisher = {Elsevier}, volume = {9}, number = {9-10}, year = {2008}, doi = {10.1016/j.crhy.2008.10.002}, language = {en}, }
TY - JOUR AU - Gustav Veith AU - Eugen Lach AU - Karsten Schuh TI - 100 Gigabit-per-second: Ultra-high transmission bitrate for next generation optical transport networks JO - Comptes Rendus. Physique PY - 2008 SP - 1002 EP - 1011 VL - 9 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2008.10.002 LA - en ID - CRPHYS_2008__9_9-10_1002_0 ER -
%0 Journal Article %A Gustav Veith %A Eugen Lach %A Karsten Schuh %T 100 Gigabit-per-second: Ultra-high transmission bitrate for next generation optical transport networks %J Comptes Rendus. Physique %D 2008 %P 1002-1011 %V 9 %N 9-10 %I Elsevier %R 10.1016/j.crhy.2008.10.002 %G en %F CRPHYS_2008__9_9-10_1002_0
Gustav Veith; Eugen Lach; Karsten Schuh. 100 Gigabit-per-second: Ultra-high transmission bitrate for next generation optical transport networks. Comptes Rendus. Physique, Recent advances in optical telecommunications / Avancées récentes en télécommunications optiques, Volume 9 (2008) no. 9-10, pp. 1002-1011. doi : 10.1016/j.crhy.2008.10.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.10.002/
[1] http://www.de-cix.de/content/network.html (DE-CIX traffic statistics, Link:)
[2] ITU-T, SG15 recommendations G.872, G.709
[3] Erbium-Doped Fiber Amplifiers: Device and System Developments, Wiley, New York, 2002 (Chapter 7)
[4] et al. Chromatic dispersion limitations in coherent lightwave transmission systems, IEEE Journal of Lightwave Technology, Volume 9 (1988) no. 5, pp. 704-709
[5] PMD compensation techniques (C.R. Menyuk; A. Galtarossa, eds.), Polarization Mode Dispersion, Optical and Fiber Communications Reports, vol. 1, Springer, New York, 2005
[6] P.J. Winzer, G. Raybon, S. Chandrasehkar, C.R. Doerr, T. Kawanishi, T. Sakamoto, K. Higuma,
[7] G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. Bertran Prado, F. Verluise, M. Achouche, A. Boutin, F. Blanche, J.-Y. Dupuy, S. Bigo, Transmission of 16.4 Tbit/s capacity over 2,550 km using PDM QPSK modulation format and coherent receiver, in: Proc. OFC 2008, post-deadline paper PDP3
[8] K. Schuh, B. Junginger, E. Lach, G. Veith, 1 Tbit/s (
[9] K. Schuh, E. Lach, B. Junginger, A. Klekamp, G. Veith,
[10] K. Schuh, E. Lach, B. Junginger, G. Veith, J. Renaudier, G. Charlet, P. Tran, 8 Tbit/s (
[11] Study on the optimum Reed–Solomon-based FEC codes for 40-Gb/s-based ultralong-distance WDM transmission, IEEE Journal of Lightwave Technology, Volume 20 (2002) no. 12
[12] InP-based waveguide-integrated photodetector with 100 GHz bandwidth, IEEE Journal Selected Topics in Quantum Electronics, Volume 10 (2004) no. 4, pp. 668-672
[13] S.L. Jansen, I. Morita, H. Tanaka,
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier