Comptes Rendus
A review of anomalous resonance, its associated cloaking, and superlensing
[Résonance anormale, invisibilité et super-resolution associée : état de l’art]
Comptes Rendus. Physique, Volume 21 (2020) no. 4-5, pp. 409-423.

Nous passons en revue quelques faits saillant de l’historique de la résonance anormale, de l’invisibilité associée à la résonance anormale, et celle associée aux milieux complémentaires et de la super-résolution.

We review a selected history of anomalous resonance, cloaking due to anomalous resonance, cloaking due to complementary media, and superlensing.

Première publication :
Publié le :
DOI : 10.5802/crphys.6
Keywords: Anomalous resonance, Cloaking, Superlensing
Mot clés : Résonance anormale, Invisibilité, Super-résolution

Ross C. McPhedran 1 ; Graeme W. Milton 2

1 School of Physics, The University of Sydney, Australia
2 Department of Mathematics, University of Utah, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2020__21_4-5_409_0,
     author = {Ross C. McPhedran and Graeme W. Milton},
     title = {A review of anomalous resonance, its associated cloaking, and superlensing},
     journal = {Comptes Rendus. Physique},
     pages = {409--423},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {21},
     number = {4-5},
     year = {2020},
     doi = {10.5802/crphys.6},
     language = {en},
}
TY  - JOUR
AU  - Ross C. McPhedran
AU  - Graeme W. Milton
TI  - A review of anomalous resonance, its associated cloaking, and superlensing
JO  - Comptes Rendus. Physique
PY  - 2020
SP  - 409
EP  - 423
VL  - 21
IS  - 4-5
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.6
LA  - en
ID  - CRPHYS_2020__21_4-5_409_0
ER  - 
%0 Journal Article
%A Ross C. McPhedran
%A Graeme W. Milton
%T A review of anomalous resonance, its associated cloaking, and superlensing
%J Comptes Rendus. Physique
%D 2020
%P 409-423
%V 21
%N 4-5
%I Académie des sciences, Paris
%R 10.5802/crphys.6
%G en
%F CRPHYS_2020__21_4-5_409_0
Ross C. McPhedran; Graeme W. Milton. A review of anomalous resonance, its associated cloaking, and superlensing. Comptes Rendus. Physique, Volume 21 (2020) no. 4-5, pp. 409-423. doi : 10.5802/crphys.6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.6/

[1] N. A. Nicorovici; R. C. McPhedran; G. W. Milton Transport properties of a three-phase composite material: The square array of coated cylinders, Proc. R. Soc. Lond. Ser. A, Volume 442 (1993) no. 1916, pp. 599-620

[2] H. Ammari; G. Ciraolo; H. Kang; H. Lee; G. W. Milton Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 2, pp. 667-692 | DOI | Zbl

[3] H. Ammari; G. Ciraolo; H. Kang; H. Lee; G. W. Milton Anomalous localized resonance using a folded geometry in three dimensions, Proc. R. Soc. A, Volume 469 (2013) no. 2154, 20130048 | DOI | Zbl

[4] G. W. Milton The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics, 6, Cambridge University Press, Cambridge, UK, 2002 | MR | Zbl

[5] C.-W. Qiu; B. Luk’yanchuk Peculiarities in light scattering by spherical particles with radial anisotropy, J. Opt. Soc. Amer. A, Volume 25 (2008) no. 7, pp. 1623-1628 | DOI

[6] J. Helsing; R. C. McPhedran; G. W. Milton Spectral super-resolution in metamaterial composites, New J. Phys., Volume 13 (2011) no. 11, 115005 | DOI

[7] A. Sihvola; H. Wallén; H. Kettunen Losses from lossless building blocks?, Metamaterials ’2012: The 6th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (2012), pp. 261-263

[8] N. M. Estakhri; A. Alù Physics of unbounded, broadband absorption/gain efficiency in plasmonic nanoparticles, Phys. Rev. B, Volume 87 (2013) no. 20, 205418

[9] A. Bonnet-BenDhia; L. Chesnel; P. Ciarlet Jr. T-coercivity for scalar interface problems between dielectrics and metamaterials, Math. Model. Numer. Anal., Volume 46 (2012), pp. 1363-1387 | Numdam | MR | Zbl

[10] A.-S. Bonnet-Ben Dhia; L. Chesnel; X. Claeys Radiation condition for a non-smooth interface between a dielectric and a metamaterial, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 9, pp. 1629-1662 | DOI | MR | Zbl

[11] A.-S. Bonnet-Ben Dhia; L. Chesnel; P. Ciarlet Jr. Two-dimensional Maxwell’s equations with sign-changing coefficients, Appl. Numer. Math., Volume 79 (2014), pp. 29-41 Workshop on Numerical Electromagnetics and Industrial Applications (NELIA 2011) | DOI | MR | Zbl

[12] A.-S. Bonnet-Ben Dhia; L. Chesnel; P. Ciarlet Jr. T-coercivity for the Maxwell problem with sign-changing coefficients, Comm. Partial Differential Equations, Volume 39 (2014) no. 6, pp. 1007-1031 Workshop on Numerical Electromagnetics and Industrial Applications (NELIA 2011) | MR | Zbl

[13] N. A. Nicorovici; R. C. McPhedran; G. W. Milton Optical and dielectric properties of partially resonant composites, Phys. Rev. B, Volume 49 (1994) no. 12, pp. 8479-8482 | DOI

[14] T. Yang; H. Chen; X. Luo; H. Ma Superscatterer: enhancement of scattering with complementary media, Opt. Express, Volume 16 (2008) no. 22, pp. 18545-18550 | DOI

[15] L. S. Dolin To the possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling, Izv. Vyssh. Uchebn. Zaved., Volume 4 (1961) no. 5, pp. 964-967 (English translation available at http://www.math.utah.edu/ milton/DolinTrans2.pdf)

[16] A. Alú; N. Engheta Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E, Volume 72 (2005) no. 1, 0166623

[17] M. Kerker Invisible bodies, J. Opt. Soc. Amer., Volume 65 (1975) no. 4, pp. 376-379 | DOI

[18] G. W. Milton Unusual resonant phenomena where ghost image charges appear in the matrix (unpublished report, Courant Institute, New York, NY, USA, 1993–1996, available on ResearchGate. Timestamp: May 13th 1996)

[19] X. S. Rao; C. K. Ong Amplification of evanescent waves in a lossy left-handed material slab, Phys. Rev. B, Volume 68 (2003) no. 11, 113103

[20] G. Shvets Applications of surface plasmon and phonon polaritons to developing left-handed materials and nano-lithography, Plasmonics: Metallic Nanostructures and their Optical Properties (Bellingham, WA) (N. J. Halas, ed.) (Proceedings of SPIE), Volume 5221, SPIE Publications, Bellingham, 2003, pp. 124-132

[21] G. Shvets Photonic approach to making a material with a negative index of refraction, Phys. Rev. B, Volume 67 (2003) no. 3, 035109 | DOI

[22] S. A. Cummer Simulated causal subwavelength focusing by a negative refractive index slab, Appl. Phys. Lett., Volume 82 (2003) no. 10, pp. 1503-1505 | DOI

[23] R. Merlin Analytical solution of the almost-perfect-lens problem, Appl. Phys. Lett., Volume 84 (2004) no. 8, pp. 1290-1292 | DOI

[24] S. Guenneau; B. Gralak; J. B. Pendry Perfect corner reflector, Opt. Lett., Volume 30 (2005), pp. 1204-1206 | DOI

[25] V. A. Podolskiy; E. E. Narimanov Near-sighted superlens, Opt. Lett., Volume 30 (2005) no. 1, pp. 75-77 | DOI

[26] V. A. Podolskiy; N. A. Kuhta; G. W. Milton Optimizing the superlens: manipulating geometry to enhance the resolution, Appl. Phys. Lett., Volume 87 (2005) no. 23, 231113

[27] J. B. Pendry Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000) no. 18, pp. 3966-3969 | DOI

[28] V. G. Veselago The electrodynamics of substances with simultaneously negative values of ϵ and μ, Uspekhi Fizicheskikh Nauk, Volume 92 (1967), pp. 517-526 English translation in Sov. Phys. Uspekhi 10 (1968), no. 4, 509–514

[29] R. E. Collin Frequency dispersion limits resolution in Veselago lens, Prog. Electromagn. Res. B, Volume 19 (2010), pp. 233-261 | DOI

[30] B. Gralak; A. Tip Macroscopic Maxwell’s equations and negative index materials, J. Math. Phys., Volume 51 (2010) no. 5, 052902 | DOI | MR | Zbl

[31] B. Gralak; D. Maystre Negative index materials and time-harmonic electromagnetic field, C. R. Phys., Volume 13 (2012) no. 8, pp. 786-799 | DOI

[32] G. W. Milton; N.-A. P. Nicorovici; R. C. McPhedran; V. A. Podolskiy A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance, Proc. R. Soc. A, Volume 461 (2005) no. 2064, pp. 3999-4034 | DOI | MR | Zbl

[33] G. W. Milton; N.-A. P. Nicorovici On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. A, Volume 462 (2006) no. 2074, pp. 3027-3059 | DOI | MR | Zbl

[34] J. B. Pendry Perfect cylindrical lenses, Opt. Express, Volume 11 (2003) no. 7, pp. 755-760 | DOI

[35] J. B. Pendry; D. Schurig; D. R. Smith Controlling electromagnetic fields, Science, Volume 312 (2006) no. 5781, pp. 1780-1782 | DOI | MR | Zbl

[36] U. Leonhardt Optical conformal mapping, Science, Volume 312 (2006) no. 5781, pp. 1777-1780 | DOI | MR | Zbl

[37] A. Greenleaf; M. Lassas; G. Uhlmann Anisotropic conductivities that cannot be detected by EIT, Physiol. Meas., Volume 24 (2003) no. 2, pp. 413-419 | DOI

[38] N.-A. P. Nicorovici; G. W. Milton; R. C. McPhedran; L. C. Botten Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance, Opt. Express, Volume 15 (2007) no. 10, pp. 6314-6323 | DOI

[39] O. P. Bruno; S. Lintner Superlens-cloaking of small dielectric bodies in the quasistatic regime, J. Appl. Phys., Volume 102 (2007) no. 12, 124502

[40] H.-M. Nguyên Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object, SIAM J. Math. Anal., Volume 49 (2017) no. 4, pp. 3208-3232 | DOI | MR | Zbl

[41] G. Bouchitté; B. Schweizer Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math., Volume 63 (2010) no. 4, pp. 437-463 | DOI | MR | Zbl

[42] U. Leonhardt; T. G. Philbin General relativity in electrical engineering, New J. Phys., Volume 8 (2006) no. 10, 247 | DOI

[43] D. Maystre; S. Enoch Perfect lenses made with left-handed materials: Alice’s mirror?, J. Opt. Soc. Amer., Volume 21 (2004) no. 1, pp. 122-131 | DOI

[44] G. W. Milton; N.-A. P. Nicorovici; R. C. McPhedran; K. Cherednichenko; Z. Jacob Solutions in folded geometries, and associated cloaking due to anomalous resonance, New J. Phys., Volume 10 (2008) no. 11, 115021

[45] R. V. Kohn; J. Lu; B. Schweizer; M. I. Weinstein A variational perspective on cloaking by anomalous localized resonance, Comm. Math. Phys., Volume 328 (2014) no. 1, pp. 1-27 (English), Available as arXiv:1210.4823 [math.AP] | DOI | MR | Zbl

[46] H. Kettunen; M. Lassas; P. Ola On absence and existence of the anomalous localized resonance without the quasi-static approximation, SIAM J. Appl. Math., Volume 78 (2018) no. 1, pp. 609-628 | DOI | MR | Zbl

[47] H. Li; H. Liu On anomalous localized resonance for the elastostatic system, SIAM J. Appl. Math., Volume 5 (2016), pp. 3322-3344 | DOI | Zbl

[48] K. Ando; H. Kang; K. Kim; S. Yu Spectrum of Neumann–Poincaré operator on annuli and cloaking by anomalous localized resonance for linear elasticity, SIAM J. Appl. Math., Volume 49 (2017) no. 5, pp. 4232-4250 | DOI | Zbl

[49] K. Ando; Y.-G. Ji; H. Kang; K. Kim; S. Yu Spectral properties of the Neumann–Poincaré operator and cloaking by anomalous localized resonance for the elasto-static system, Eur. J. Appl. Math., Volume 29 (2018) no. 2, pp. 189-225 | DOI | Zbl

[50] Y. Deng; H. Li; H. Liu Spectral properties of Neumann–Poincaré operator and anomalous localized resonance in elasticity beyond quasi-static limit, J. Elast. (2020), Deng2020 | DOI | Zbl

[51] G. Rosenblatt; M. Orenstein Power drainage and energy dissipation in lossy but perfect lenses, Phys. Rev. A, Volume 95 (2017) no. 5, 053857 | DOI

[52] G. W. Milton; N.-A. P. Nicorovici; R. C. McPhedran Opaque perfect lenses, Physica B, Volume 394 (2007) no. 2, pp. 171-175 | DOI

[53] A. D. Yaghjian; T. B. Hansen Plane-wave solutions to frequency-domain and time-domain scattering from magnetodielectric slabs, Phys. Rev. E, Volume 73 (2006) no. 4, 046608

[54] G. T. Di Francia Super-gain antennas and optical resolving power, Il Nuovo Cimento, Volume 9 (1952), pp. 426-438 | DOI

[55] H. Shim; H. Chung; O. D. Miller Maximal free-space concentration of electromagnetic waves, Phys. Rev. Appl., Volume 14 (2020), 014007 | DOI

[56] A. D. Yaghjian; S. R. Best Impedance, bandwidth, and Q of antennas, IEEE Trans. Antennas and Propagation, Volume 53 (2005) no. 4, pp. 1298-1324 | DOI

[57] M. Cassier; C. Hazard; P. Joly Spectral theory for maxwell’s equations at the interface of a metamaterial. Part I: generalized Fourier transform, Comm. Partial Differential Equations, Volume 42 (2017) no. 11, pp. 1707-1748 | DOI | MR | Zbl

[58] T. Meklachi; G. W. Milton; D. Onofrei; A. E. Thaler; G. Funchess Sensitivity of anomalous localized resonance phenomena with respect to dissipation, Quart. Appl. Math., Volume 74 (2016) no. 2, pp. 201-234 | DOI | MR | Zbl

[59] M. Xiao; X. Huang; H. Liu; C. T. Chan Enhancement of polarizabilities of cylinders with cylinder-slab resonances, Sci. Rep., Volume 5 (2015), p. 8189 | DOI

[60] Y. Lai; H. Chen; Z.-Q. Zhang; C. T. Chan Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett., Volume 102 (2009) no. 9, 093901

[61] J. B. Pendry; S. A. Ramakrishna Focussing light using negative refraction, J. Phys.: Condens. Matter, Volume 15 (2003) no. 37, pp. 6345-6364

[62] Y. Liu; B. Gralak; R. C. McPhedran; S. Guenneau Finite frequency external cloaking with complementary bianisotropic media, Opt. Express, Volume 22 (2014) no. 14, pp. 17387-17402 | DOI

[63] L. H. Nguyên Cloaking using complementary media in the quasistatic regime, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 33 (2016) no. 6, pp. 1509-1518 | DOI | MR | Zbl

[64] H.-M. Nguyên; L. H. Nguyên Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations, Trans. Amer. Math. Soc. B, Volume 2 (2015), pp. 93-112 | DOI | MR | Zbl

[65] Y. Lai; J. Ng; H. Chen; D. Han; J. Xiao; Z.-Q. Zhang; C. T. Chan Illusion optics: The optical transformation of an object into another object, Phys. Rev. Lett., Volume 102 (2009) no. 25, 253902

[66] R. C. McPhedran; N.-A. P. Nicorovici; L. C. Botten; G. W. Milton Cloaking by plasmonic resonance among systems of particles: cooperation or combat?, C. R. Phys., Volume 10 (2009) no. 5, pp. 391-399 | DOI

[67] F. G. Vasquez; G. W. Milton; D. Onofrei Active exterior cloaking for the 2D Laplace and Helmholtz equations, Phys. Rev. Lett., Volume 103 (2009) no. 7, 073901 | DOI | Zbl

[68] F. G. Vasquez; G. W. Milton; D. Onofrei Broadband exterior cloaking, Opt. Express, Volume 17 (2009) no. 17, pp. 14800-14805 | DOI

[69] F. G. Vasquez; G. W. Milton; D. Onofrei Exterior cloaking with active sources in two dimensional acoustics, Wave Motion, Volume 48 (2011) no. 6, pp. 515-524 | DOI | MR | Zbl

[70] F. G. Vasquez; G. W. Milton; D. Onofrei Mathematical analysis of the two dimensional active exterior cloaking in the quasistatic regime, Anal. Math. Phys., Volume 2 (2012) no. 3, pp. 231-246 | DOI | MR | Zbl

[71] A. N. Norris; F. A. Amirkulova; W. J. Parnell Active elastodynamic cloaking, Math. Mech. Solids, Volume 19 (2014) no. 6, pp. 603-625 | DOI | MR | Zbl

[72] D. A. B. Miller On perfect cloaking, Opt. Express, Volume 14 (2006) no. 25, pp. 12457-12466 | DOI

[73] M. Selvanayagam; G. V. Eleftheriades Experimental demonstration of active electromagnetic cloaking, Phys. Rev. X, Volume 3 (2013) no. 4, 041011

[74] J. O’Neill; Ö. Selsil; R. C. McPhedran; A. B. Movchan; N. V. Movchan Active cloaking of inclusions for flexural waves in thin elastic plates, Quart. J. Mech. Appl. Math., Volume 68 (2015) no. 3, pp. 263-288 | DOI | MR | Zbl

[75] E. Yablonovitch Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., Volume 58 (1987) no. 20, pp. 2059-2062 | DOI

[76] R. C. McPhedran; L. C. Botten; J. McOrist; A. A. Asatryan; C. M. de Sterke; N. A. Nicorovici Density of states functions for photonic crystals, Phys. Rev. E, Volume 69 (2004) no. 1, 016609

[77] D. P. Fussell; R. C. McPhedran; C. M. de Sterke Decay rate and level shift in a circular dielectric waveguide, Phys. Rev. A, Volume 71 (2005) no. 1, 013815

[78] A. A. Asatryan; L. C. Botten; N. A. Nicorovici; R. C. McPhedran; C. M. de Sterke Frequency shift of sources embedded in finite two-dimensional photonic clusters, Waves Random Complex Media, Volume 16 (2006) no. 2, pp. 151-165 | DOI | Zbl

[79] Z. Jacob; J.-Y. Kim; G. V. Naik; A. Boltasseva; E. E. Narimanov; V. M. Shalaev Engineering photonic density of states using metamaterials, Appl. Phys. B, Volume 100 (2010) no. 1, pp. 215-218 | DOI

[80] C. Neumann Hydrodynamische untersuchung: nebst einem anhange über die probleme der elektrostatik und der magnetischen induction, Teubner, Leipzig, 1883, pp. 271-282 | Zbl

[81] L. Poladian Effective transport and optical properties of composite materials, Ph. D. Thesis, University of Sydney, Australia (1991)

Cité par Sources :

Commentaires - Politique