[Résonance anormale, invisibilité et super-resolution associée : état de l’art]
Nous passons en revue quelques faits saillant de l’historique de la résonance anormale, de l’invisibilité associée à la résonance anormale, et celle associée aux milieux complémentaires et de la super-résolution.
We review a selected history of anomalous resonance, cloaking due to anomalous resonance, cloaking due to complementary media, and superlensing.
Publié le :
Mot clés : Résonance anormale, Invisibilité, Super-résolution
Ross C. McPhedran 1 ; Graeme W. Milton 2
@article{CRPHYS_2020__21_4-5_409_0, author = {Ross C. McPhedran and Graeme W. Milton}, title = {A review of anomalous resonance, its associated cloaking, and superlensing}, journal = {Comptes Rendus. Physique}, pages = {409--423}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {4-5}, year = {2020}, doi = {10.5802/crphys.6}, language = {en}, }
TY - JOUR AU - Ross C. McPhedran AU - Graeme W. Milton TI - A review of anomalous resonance, its associated cloaking, and superlensing JO - Comptes Rendus. Physique PY - 2020 SP - 409 EP - 423 VL - 21 IS - 4-5 PB - Académie des sciences, Paris DO - 10.5802/crphys.6 LA - en ID - CRPHYS_2020__21_4-5_409_0 ER -
Ross C. McPhedran; Graeme W. Milton. A review of anomalous resonance, its associated cloaking, and superlensing. Comptes Rendus. Physique, Volume 21 (2020) no. 4-5, pp. 409-423. doi : 10.5802/crphys.6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.6/
[1] Transport properties of a three-phase composite material: The square array of coated cylinders, Proc. R. Soc. Lond. Ser. A, Volume 442 (1993) no. 1916, pp. 599-620
[2] Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 2, pp. 667-692 | DOI | Zbl
[3] Anomalous localized resonance using a folded geometry in three dimensions, Proc. R. Soc. A, Volume 469 (2013) no. 2154, 20130048 | DOI | Zbl
[4] The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics, 6, Cambridge University Press, Cambridge, UK, 2002 | MR | Zbl
[5] Peculiarities in light scattering by spherical particles with radial anisotropy, J. Opt. Soc. Amer. A, Volume 25 (2008) no. 7, pp. 1623-1628 | DOI
[6] Spectral super-resolution in metamaterial composites, New J. Phys., Volume 13 (2011) no. 11, 115005 | DOI
[7] Losses from lossless building blocks?, Metamaterials ’2012: The 6th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (2012), pp. 261-263
[8] Physics of unbounded, broadband absorption/gain efficiency in plasmonic nanoparticles, Phys. Rev. B, Volume 87 (2013) no. 20, 205418
[9] T-coercivity for scalar interface problems between dielectrics and metamaterials, Math. Model. Numer. Anal., Volume 46 (2012), pp. 1363-1387 | Numdam | MR | Zbl
[10] Radiation condition for a non-smooth interface between a dielectric and a metamaterial, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 9, pp. 1629-1662 | DOI | MR | Zbl
[11] Two-dimensional Maxwell’s equations with sign-changing coefficients, Appl. Numer. Math., Volume 79 (2014), pp. 29-41 Workshop on Numerical Electromagnetics and Industrial Applications (NELIA 2011) | DOI | MR | Zbl
[12] T-coercivity for the Maxwell problem with sign-changing coefficients, Comm. Partial Differential Equations, Volume 39 (2014) no. 6, pp. 1007-1031 Workshop on Numerical Electromagnetics and Industrial Applications (NELIA 2011) | MR | Zbl
[13] Optical and dielectric properties of partially resonant composites, Phys. Rev. B, Volume 49 (1994) no. 12, pp. 8479-8482 | DOI
[14] Superscatterer: enhancement of scattering with complementary media, Opt. Express, Volume 16 (2008) no. 22, pp. 18545-18550 | DOI
[15] To the possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling, Izv. Vyssh. Uchebn. Zaved., Volume 4 (1961) no. 5, pp. 964-967 (English translation available at http://www.math.utah.edu/ milton/DolinTrans2.pdf)
[16] Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E, Volume 72 (2005) no. 1, 0166623
[17] Invisible bodies, J. Opt. Soc. Amer., Volume 65 (1975) no. 4, pp. 376-379 | DOI
[18] Unusual resonant phenomena where ghost image charges appear in the matrix (unpublished report, Courant Institute, New York, NY, USA, 1993–1996, available on ResearchGate. Timestamp: May 13th 1996)
[19] Amplification of evanescent waves in a lossy left-handed material slab, Phys. Rev. B, Volume 68 (2003) no. 11, 113103
[20] Applications of surface plasmon and phonon polaritons to developing left-handed materials and nano-lithography, Plasmonics: Metallic Nanostructures and their Optical Properties (Bellingham, WA) (N. J. Halas, ed.) (Proceedings of SPIE), Volume 5221, SPIE Publications, Bellingham, 2003, pp. 124-132
[21] Photonic approach to making a material with a negative index of refraction, Phys. Rev. B, Volume 67 (2003) no. 3, 035109 | DOI
[22] Simulated causal subwavelength focusing by a negative refractive index slab, Appl. Phys. Lett., Volume 82 (2003) no. 10, pp. 1503-1505 | DOI
[23] Analytical solution of the almost-perfect-lens problem, Appl. Phys. Lett., Volume 84 (2004) no. 8, pp. 1290-1292 | DOI
[24] Perfect corner reflector, Opt. Lett., Volume 30 (2005), pp. 1204-1206 | DOI
[25] Near-sighted superlens, Opt. Lett., Volume 30 (2005) no. 1, pp. 75-77 | DOI
[26] Optimizing the superlens: manipulating geometry to enhance the resolution, Appl. Phys. Lett., Volume 87 (2005) no. 23, 231113
[27] Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000) no. 18, pp. 3966-3969 | DOI
[28] The electrodynamics of substances with simultaneously negative values of and , Uspekhi Fizicheskikh Nauk, Volume 92 (1967), pp. 517-526 English translation in Sov. Phys. Uspekhi 10 (1968), no. 4, 509–514
[29] Frequency dispersion limits resolution in Veselago lens, Prog. Electromagn. Res. B, Volume 19 (2010), pp. 233-261 | DOI
[30] Macroscopic Maxwell’s equations and negative index materials, J. Math. Phys., Volume 51 (2010) no. 5, 052902 | DOI | MR | Zbl
[31] Negative index materials and time-harmonic electromagnetic field, C. R. Phys., Volume 13 (2012) no. 8, pp. 786-799 | DOI
[32] A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance, Proc. R. Soc. A, Volume 461 (2005) no. 2064, pp. 3999-4034 | DOI | MR | Zbl
[33] On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. A, Volume 462 (2006) no. 2074, pp. 3027-3059 | DOI | MR | Zbl
[34] Perfect cylindrical lenses, Opt. Express, Volume 11 (2003) no. 7, pp. 755-760 | DOI
[35] Controlling electromagnetic fields, Science, Volume 312 (2006) no. 5781, pp. 1780-1782 | DOI | MR | Zbl
[36] Optical conformal mapping, Science, Volume 312 (2006) no. 5781, pp. 1777-1780 | DOI | MR | Zbl
[37] Anisotropic conductivities that cannot be detected by EIT, Physiol. Meas., Volume 24 (2003) no. 2, pp. 413-419 | DOI
[38] Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance, Opt. Express, Volume 15 (2007) no. 10, pp. 6314-6323 | DOI
[39] Superlens-cloaking of small dielectric bodies in the quasistatic regime, J. Appl. Phys., Volume 102 (2007) no. 12, 124502
[40] Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object, SIAM J. Math. Anal., Volume 49 (2017) no. 4, pp. 3208-3232 | DOI | MR | Zbl
[41] Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math., Volume 63 (2010) no. 4, pp. 437-463 | DOI | MR | Zbl
[42] General relativity in electrical engineering, New J. Phys., Volume 8 (2006) no. 10, 247 | DOI
[43] Perfect lenses made with left-handed materials: Alice’s mirror?, J. Opt. Soc. Amer., Volume 21 (2004) no. 1, pp. 122-131 | DOI
[44] Solutions in folded geometries, and associated cloaking due to anomalous resonance, New J. Phys., Volume 10 (2008) no. 11, 115021
[45] A variational perspective on cloaking by anomalous localized resonance, Comm. Math. Phys., Volume 328 (2014) no. 1, pp. 1-27 (English), Available as arXiv:1210.4823 [math.AP] | DOI | MR | Zbl
[46] On absence and existence of the anomalous localized resonance without the quasi-static approximation, SIAM J. Appl. Math., Volume 78 (2018) no. 1, pp. 609-628 | DOI | MR | Zbl
[47] On anomalous localized resonance for the elastostatic system, SIAM J. Appl. Math., Volume 5 (2016), pp. 3322-3344 | DOI | Zbl
[48] Spectrum of Neumann–Poincaré operator on annuli and cloaking by anomalous localized resonance for linear elasticity, SIAM J. Appl. Math., Volume 49 (2017) no. 5, pp. 4232-4250 | DOI | Zbl
[49] Spectral properties of the Neumann–Poincaré operator and cloaking by anomalous localized resonance for the elasto-static system, Eur. J. Appl. Math., Volume 29 (2018) no. 2, pp. 189-225 | DOI | Zbl
[50] Spectral properties of Neumann–Poincaré operator and anomalous localized resonance in elasticity beyond quasi-static limit, J. Elast. (2020), Deng2020 | DOI | Zbl
[51] Power drainage and energy dissipation in lossy but perfect lenses, Phys. Rev. A, Volume 95 (2017) no. 5, 053857 | DOI
[52] Opaque perfect lenses, Physica B, Volume 394 (2007) no. 2, pp. 171-175 | DOI
[53] Plane-wave solutions to frequency-domain and time-domain scattering from magnetodielectric slabs, Phys. Rev. E, Volume 73 (2006) no. 4, 046608
[54] Super-gain antennas and optical resolving power, Il Nuovo Cimento, Volume 9 (1952), pp. 426-438 | DOI
[55] Maximal free-space concentration of electromagnetic waves, Phys. Rev. Appl., Volume 14 (2020), 014007 | DOI
[56] Impedance, bandwidth, and Q of antennas, IEEE Trans. Antennas and Propagation, Volume 53 (2005) no. 4, pp. 1298-1324 | DOI
[57] Spectral theory for maxwell’s equations at the interface of a metamaterial. Part I: generalized Fourier transform, Comm. Partial Differential Equations, Volume 42 (2017) no. 11, pp. 1707-1748 | DOI | MR | Zbl
[58] Sensitivity of anomalous localized resonance phenomena with respect to dissipation, Quart. Appl. Math., Volume 74 (2016) no. 2, pp. 201-234 | DOI | MR | Zbl
[59] Enhancement of polarizabilities of cylinders with cylinder-slab resonances, Sci. Rep., Volume 5 (2015), p. 8189 | DOI
[60] Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett., Volume 102 (2009) no. 9, 093901
[61] Focussing light using negative refraction, J. Phys.: Condens. Matter, Volume 15 (2003) no. 37, pp. 6345-6364
[62] Finite frequency external cloaking with complementary bianisotropic media, Opt. Express, Volume 22 (2014) no. 14, pp. 17387-17402 | DOI
[63] Cloaking using complementary media in the quasistatic regime, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 33 (2016) no. 6, pp. 1509-1518 | DOI | MR | Zbl
[64] Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations, Trans. Amer. Math. Soc. B, Volume 2 (2015), pp. 93-112 | DOI | MR | Zbl
[65] Illusion optics: The optical transformation of an object into another object, Phys. Rev. Lett., Volume 102 (2009) no. 25, 253902
[66] Cloaking by plasmonic resonance among systems of particles: cooperation or combat?, C. R. Phys., Volume 10 (2009) no. 5, pp. 391-399 | DOI
[67] Active exterior cloaking for the 2D Laplace and Helmholtz equations, Phys. Rev. Lett., Volume 103 (2009) no. 7, 073901 | DOI | Zbl
[68] Broadband exterior cloaking, Opt. Express, Volume 17 (2009) no. 17, pp. 14800-14805 | DOI
[69] Exterior cloaking with active sources in two dimensional acoustics, Wave Motion, Volume 48 (2011) no. 6, pp. 515-524 | DOI | MR | Zbl
[70] Mathematical analysis of the two dimensional active exterior cloaking in the quasistatic regime, Anal. Math. Phys., Volume 2 (2012) no. 3, pp. 231-246 | DOI | MR | Zbl
[71] Active elastodynamic cloaking, Math. Mech. Solids, Volume 19 (2014) no. 6, pp. 603-625 | DOI | MR | Zbl
[72] On perfect cloaking, Opt. Express, Volume 14 (2006) no. 25, pp. 12457-12466 | DOI
[73] Experimental demonstration of active electromagnetic cloaking, Phys. Rev. X, Volume 3 (2013) no. 4, 041011
[74] Active cloaking of inclusions for flexural waves in thin elastic plates, Quart. J. Mech. Appl. Math., Volume 68 (2015) no. 3, pp. 263-288 | DOI | MR | Zbl
[75] Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., Volume 58 (1987) no. 20, pp. 2059-2062 | DOI
[76] Density of states functions for photonic crystals, Phys. Rev. E, Volume 69 (2004) no. 1, 016609
[77] Decay rate and level shift in a circular dielectric waveguide, Phys. Rev. A, Volume 71 (2005) no. 1, 013815
[78] Frequency shift of sources embedded in finite two-dimensional photonic clusters, Waves Random Complex Media, Volume 16 (2006) no. 2, pp. 151-165 | DOI | Zbl
[79] Engineering photonic density of states using metamaterials, Appl. Phys. B, Volume 100 (2010) no. 1, pp. 215-218 | DOI
[80] Hydrodynamische untersuchung: nebst einem anhange über die probleme der elektrostatik und der magnetischen induction, Teubner, Leipzig, 1883, pp. 271-282 | Zbl
[81] Effective transport and optical properties of composite materials, Ph. D. Thesis, University of Sydney, Australia (1991)
Cité par Sources :
Commentaires - Politique