Comptes Rendus
Cloaking by plasmonic resonance among systems of particles: cooperation or combat?
Comptes Rendus. Physique, Volume 10 (2009) no. 5, pp. 391-399.

We study quasistatic cloaking by the mechanism of plasmonic resonance, for systems of coated cylinders. Our focus is on the nature of the resonant cloaking interaction: whether systems of particles can be made to cooperate in cloaking a polarizable particle from an applied uniform field. We show that in fact if the cloaking regions of the systems of particles overlap, then they tend to interact in a fashion detrimental to their cloaking of the polarizable particle. If the cloaking regions touch but do not overlap, then the system of particles can cloak a larger region than each would in isolation.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file:

Nous analysons le cloaking en régime quasi-statique à travers le mécanisme des résonances plasmoniques, pour des systèmes de cylindres pelliculés. Nous focalisons notre étude sur la nature de l'interaction résonante du cloaking : à savoir si des systèmes de particules peuvent agir de concert pour cloaker une particule polarisable pour un champ extérieur uniforme. Nous montrons qu'en fait si les régions de cloaking du système de particules se chevauchent, alors elles tendent à interagir d'une manière néfaste pour chaque particule. En revanche, si les régions de cloaking se touchent mais ne se chevauchent pas, alors le système de particules peut cloaker un région plus étendue que chaque particule prise isolément.

Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :

Published online:
DOI: 10.1016/j.crhy.2009.03.007
Keywords: Cloaking, Optical properties, Electromagnetic theory, Resonance
Mot clés : Cloaking, Propriétés optiques, Théorie électromagnétique, Résonance

Ross C. McPhedran 1; Nicolae-Alexandru P. Nicorovici 1; Lindsay C. Botten 2; Graeme W. Milton 3

1 CUDOS, School of Physics, University of Sydney, NSW 2006, Australia
2 CUDOS, Department of Mathematical Sciences, University of Technology, Sydney, NSW 2007, Australia
3 Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
     author = {Ross C. McPhedran and Nicolae-Alexandru P. Nicorovici and Lindsay C. Botten and Graeme W. Milton},
     title = {Cloaking by plasmonic resonance among systems of particles: cooperation or combat?},
     journal = {Comptes Rendus. Physique},
     pages = {391--399},
     publisher = {Elsevier},
     volume = {10},
     number = {5},
     year = {2009},
     doi = {10.1016/j.crhy.2009.03.007},
     language = {en},
AU  - Ross C. McPhedran
AU  - Nicolae-Alexandru P. Nicorovici
AU  - Lindsay C. Botten
AU  - Graeme W. Milton
TI  - Cloaking by plasmonic resonance among systems of particles: cooperation or combat?
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 391
EP  - 399
VL  - 10
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.03.007
LA  - en
ID  - CRPHYS_2009__10_5_391_0
ER  - 
%0 Journal Article
%A Ross C. McPhedran
%A Nicolae-Alexandru P. Nicorovici
%A Lindsay C. Botten
%A Graeme W. Milton
%T Cloaking by plasmonic resonance among systems of particles: cooperation or combat?
%J Comptes Rendus. Physique
%D 2009
%P 391-399
%V 10
%N 5
%I Elsevier
%R 10.1016/j.crhy.2009.03.007
%G en
%F CRPHYS_2009__10_5_391_0
Ross C. McPhedran; Nicolae-Alexandru P. Nicorovici; Lindsay C. Botten; Graeme W. Milton. Cloaking by plasmonic resonance among systems of particles: cooperation or combat?. Comptes Rendus. Physique, Volume 10 (2009) no. 5, pp. 391-399. doi : 10.1016/j.crhy.2009.03.007.

[1] V.G. Veselago The electrodynamics of substances with simultaneously negative values of ϵ and μ, Soviet Phys. Uspekhi, Volume 10 (1968), p. 509

[2] M. Kerker Invisible bodies, J. Opt. Soc. Am., Volume 65 (1975), p. 376

[3] J.B. Pendry Perfect cylindrical lenses, Opt. Express, Volume 11 (2003), p. 755

[4] J.B. Pendry; S.A. Ramakrishna Focusing light using negative refraction, J. Phys.-Condens. Mat., Volume 15 (2003), p. 6345

[5] J.B. Pendry; D. Schurig; D.R. Smith Controlling electromagnetic fields, Science, Volume 312 (2006), p. 1780

[6] D. Schurig; J.J. Mock; B.J. Justice; S.A. Cummer; J.B. Pendry; A.F. Starr; D.R. Smith Metamaterial electromagnetic cloak at microwave frequencies, Science, Volume 314 (2006), p. 977

[7] U. Leonhardt Optical conformal mapping, Science, Volume 312 (2006), p. 1777

[8] A. Greenleaf; M. Lassas; G. Uhlmann Anisotropic conductivities that cannot be detected by EIT, Physiol. Meas., Volume 24 (2003), p. 413

[9] A. Greenleaf; Y. Kurylev; M. Lassas; G. Uhlmann Full-wave invisibility of active devices at all frequencies, Comm. Math. Phys., Volume 275 (2007), p. 749

[10] S. Guenneau; B. Gralak; J.B. Pendry Perfect corner reflector, Opt. Lett., Volume 30 (2005), p. 1204

[11] S.A. Ramakrishna; S. Guenneau; S. Enoch; G. Tayeb; B. Gralak Light confinement through negative refraction in photonic crystal and metamaterial checkerboards, Phys. Rev. A, Volume 75 (2007), p. 063830

[12] G.W. Milton; N.-A.P. Nicorovici On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. A, Volume 462 (2006), p. 3027

[13] G.W. Milton; N.-A.P. Nicorovici; R.C. McPhedran; V.A. Podolskiy A proof of superlensing in the quasistatic regime, limitations of superlenses in this regime due to anomalous localized resonance, Proc. R. Soc. London A, Volume 461 (2005), p. 3999

[14] G.W. Milton; N.-A.P. Nicorovici; R.C. McPhedran Opaque perfect lenses, Physica B, Volume 394 (2007), p. 171

[15] N.A. Nicorovici; G.W. Milton; R.C. McPhedran; L.C. Botten; N.A. Nicorovici; G.W. Milton; R.C. McPhedran; L.C. Botten Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance, Opt. Express, Volume 15, 2007, p. 6314 (Supporting online material)

[16] N.A. Nicorovici; R.C. McPhedran; G.W. Milton Optical dielectric properties of partially resonant composites, Phys. Rev. B, Volume 490 (1994), p. 8479

[17] A. Alu; N. Engheta Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling transparency, IEEE Trans. Antennas Propag., Volume 51 (2003), pp. 2558-2571

[18] A. Alu; N. Engheta Achieving transparency with plasmonic metamaterial coatings, Phys. Rev. E, Volume 72 (2005), p. 016623

[19] O.P. Bruno; S. Lintner Superlens-cloaking of small dielectric bodies in the quasistatic regime, J. Appl. Phys., Volume 102 (2007), p. 124502

[20] N.-A.P. Nicorovici; R.C. McPhedran; S. Enoch; G. Tayeb Finite wavelength cloaking by plasmonic resonance, New J. Phys., Volume 10 (2008), p. 115020

[21] A.G. Ramm Invisible obstacles, Ann. Polon. Math., Volume 90 (2007), p. 145

[22] D.A.B. Miller On perfect cloaking, Opt. Express, Volume 14 (2006), p. 12457

[23] G.W. Milton; N.-A.P. Nicorovici; R.C. McPhedran; K. Cherednichenko; Z. Jacob Solutions in folded geometries, associated cloaking due to anomalous resonance, New J. Phys., Volume 10 (2008), p. 115021

[24] U. Leonhardt; T.G. Philbin General relativity in electrical engineering, New J. Phys., Volume 8 (2006), p. 247

[25] Min Yan; Wei Yan; Min Qiu Cylindrical lens by a coordinate transformation, Phys. Rev. B, Volume 78 (2008), p. 125113

[26] M. Farhat; S. Guenneau; A.B. Movchan; S. Enoch Achieving invisibility over a finite range of frequencies, Opt. Express, Volume 16 (2008), p. 5656

[27] A. Alu; N. Engheta Cloaking and transparency for collections of particles with metamaterial and plasmonic covers, Opt. Express, Volume 15 (2007), p. 7578

[28] W. Wijngaard Guided normal modes of two parallel circular dielectric rods, J. Opt. Soc. Am., Volume 63 (1973), pp. 944-950

[29] W.K.H. Panofsky; M. Phillips Classical Electricity Magnetism, Addison–Wesley, Reading, 1962

Cited by Sources:

Comments - Policy