[Cloaking et résonance plasmoniques dans des systèmes de particules : coopération ou combat ?]
Nous analysons le cloaking en régime quasi-statique à travers le mécanisme des résonances plasmoniques, pour des systèmes de cylindres pelliculés. Nous focalisons notre étude sur la nature de l'interaction résonante du cloaking : à savoir si des systèmes de particules peuvent agir de concert pour cloaker une particule polarisable pour un champ extérieur uniforme. Nous montrons qu'en fait si les régions de cloaking du système de particules se chevauchent, alors elles tendent à interagir d'une manière néfaste pour chaque particule. En revanche, si les régions de cloaking se touchent mais ne se chevauchent pas, alors le système de particules peut cloaker un région plus étendue que chaque particule prise isolément.
Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :
We study quasistatic cloaking by the mechanism of plasmonic resonance, for systems of coated cylinders. Our focus is on the nature of the resonant cloaking interaction: whether systems of particles can be made to cooperate in cloaking a polarizable particle from an applied uniform field. We show that in fact if the cloaking regions of the systems of particles overlap, then they tend to interact in a fashion detrimental to their cloaking of the polarizable particle. If the cloaking regions touch but do not overlap, then the system of particles can cloak a larger region than each would in isolation.
Supplementary Materials:
Supplementary material for this article is supplied as a separate file:
Mot clés : Cloaking, Propriétés optiques, Théorie électromagnétique, Résonance
Ross C. McPhedran 1 ; Nicolae-Alexandru P. Nicorovici 1 ; Lindsay C. Botten 2 ; Graeme W. Milton 3
@article{CRPHYS_2009__10_5_391_0, author = {Ross C. McPhedran and Nicolae-Alexandru P. Nicorovici and Lindsay C. Botten and Graeme W. Milton}, title = {Cloaking by plasmonic resonance among systems of particles: cooperation or combat?}, journal = {Comptes Rendus. Physique}, pages = {391--399}, publisher = {Elsevier}, volume = {10}, number = {5}, year = {2009}, doi = {10.1016/j.crhy.2009.03.007}, language = {en}, }
TY - JOUR AU - Ross C. McPhedran AU - Nicolae-Alexandru P. Nicorovici AU - Lindsay C. Botten AU - Graeme W. Milton TI - Cloaking by plasmonic resonance among systems of particles: cooperation or combat? JO - Comptes Rendus. Physique PY - 2009 SP - 391 EP - 399 VL - 10 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2009.03.007 LA - en ID - CRPHYS_2009__10_5_391_0 ER -
%0 Journal Article %A Ross C. McPhedran %A Nicolae-Alexandru P. Nicorovici %A Lindsay C. Botten %A Graeme W. Milton %T Cloaking by plasmonic resonance among systems of particles: cooperation or combat? %J Comptes Rendus. Physique %D 2009 %P 391-399 %V 10 %N 5 %I Elsevier %R 10.1016/j.crhy.2009.03.007 %G en %F CRPHYS_2009__10_5_391_0
Ross C. McPhedran; Nicolae-Alexandru P. Nicorovici; Lindsay C. Botten; Graeme W. Milton. Cloaking by plasmonic resonance among systems of particles: cooperation or combat?. Comptes Rendus. Physique, Volume 10 (2009) no. 5, pp. 391-399. doi : 10.1016/j.crhy.2009.03.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.03.007/
[1] The electrodynamics of substances with simultaneously negative values of ϵ and μ, Soviet Phys. Uspekhi, Volume 10 (1968), p. 509
[2] Invisible bodies, J. Opt. Soc. Am., Volume 65 (1975), p. 376
[3] Perfect cylindrical lenses, Opt. Express, Volume 11 (2003), p. 755
[4] Focusing light using negative refraction, J. Phys.-Condens. Mat., Volume 15 (2003), p. 6345
[5] Controlling electromagnetic fields, Science, Volume 312 (2006), p. 1780
[6] Metamaterial electromagnetic cloak at microwave frequencies, Science, Volume 314 (2006), p. 977
[7] Optical conformal mapping, Science, Volume 312 (2006), p. 1777
[8] Anisotropic conductivities that cannot be detected by EIT, Physiol. Meas., Volume 24 (2003), p. 413
[9] Full-wave invisibility of active devices at all frequencies, Comm. Math. Phys., Volume 275 (2007), p. 749
[10] Perfect corner reflector, Opt. Lett., Volume 30 (2005), p. 1204
[11] Light confinement through negative refraction in photonic crystal and metamaterial checkerboards, Phys. Rev. A, Volume 75 (2007), p. 063830
[12] On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. A, Volume 462 (2006), p. 3027
[13] A proof of superlensing in the quasistatic regime, limitations of superlenses in this regime due to anomalous localized resonance, Proc. R. Soc. London A, Volume 461 (2005), p. 3999
[14] Opaque perfect lenses, Physica B, Volume 394 (2007), p. 171
[15] Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance, Opt. Express, Volume 15, 2007, p. 6314 http://www.physics.usyd.edu.au/cudos/research/plasmonics/cloakingsystems-appendix-02.pdf (Supporting online material)
[16] Optical dielectric properties of partially resonant composites, Phys. Rev. B, Volume 490 (1994), p. 8479
[17] Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling transparency, IEEE Trans. Antennas Propag., Volume 51 (2003), pp. 2558-2571
[18] Achieving transparency with plasmonic metamaterial coatings, Phys. Rev. E, Volume 72 (2005), p. 016623
[19] Superlens-cloaking of small dielectric bodies in the quasistatic regime, J. Appl. Phys., Volume 102 (2007), p. 124502
[20] Finite wavelength cloaking by plasmonic resonance, New J. Phys., Volume 10 (2008), p. 115020
[21] Invisible obstacles, Ann. Polon. Math., Volume 90 (2007), p. 145
[22] On perfect cloaking, Opt. Express, Volume 14 (2006), p. 12457
[23] Solutions in folded geometries, associated cloaking due to anomalous resonance, New J. Phys., Volume 10 (2008), p. 115021
[24] General relativity in electrical engineering, New J. Phys., Volume 8 (2006), p. 247
[25] Cylindrical lens by a coordinate transformation, Phys. Rev. B, Volume 78 (2008), p. 125113
[26] Achieving invisibility over a finite range of frequencies, Opt. Express, Volume 16 (2008), p. 5656
[27] Cloaking and transparency for collections of particles with metamaterial and plasmonic covers, Opt. Express, Volume 15 (2007), p. 7578
[28] Guided normal modes of two parallel circular dielectric rods, J. Opt. Soc. Am., Volume 63 (1973), pp. 944-950
[29] Classical Electricity Magnetism, Addison–Wesley, Reading, 1962
Cité par Sources :
Commentaires - Politique