Since the discovery of the first extra-solar planets, we are confronted with the puzzling diversity of planetary systems. Processes like planet radial migration in gas-disks and planetary orbital instabilities, often invoked to explain the exotic orbits of the extra-solar planets, at first sight do not seem to have played a role in our system. In reality, though, there are several aspects in the structure of our Solar System that cannot be explained in the classic scenario of in-situ formation and smooth evolution of the giant planets. This article outlines a new view of the evolution of the outer Solar System that emerges from the so-called ‘Nice model’ and its recent extensions. The story provided by this model describes a very “dynamical” Solar System, with giant planets affected by both radial migrations and a temporary orbital instability. Thus, the diversity between our system and those found so far around other stars does not seem to be due to different processes that operated here and elsewhere, but rather stems from the strong sensitivity of chaotic evolutions to small differences in the initial and environmental conditions.
Depuis la découverte des planètes extra-solaires, l'étonnante diversité des systèmes planétaires défie les théories sur la formation et l'évolution des planètes. Deux processus sont souvent invoqués pour expliquer les orbites exotiques des exo-planètes : la migration radiale des planètes au sein du disque de gaz primitif, et le passage des orbites planétaires par une phase d'instabilité dynamique. A première vue, ces processus n'ont pas eu lieu ici. Mais, à bien regarder, il y a plusieurs aspects de la structure de notre Système solaire qui ne sont pas compatibles avec le scénario classique dans lequel nos planètes se seraient formées sur place. Cet article décrit un nouveau paradigme de l'évolution du Système solaire externe, tel qu'il découle du « modèle de Nice » et de ses extensions récentes. Ce modèle décrit un Système solaire très « dynamique », dans lequel les planètes géantes ont subi des migrations radiales importantes et une phase d'instabilité globale. Par conséquent, les différences entre notre Système solaire et les autres systèmes planétaires connus ne semblent pas découler d'une différence entre les processus qui ont agi ici ou ailleurs, mais plutôt elles sont dues à l'extrême sensibilité aux conditions initiales et environnementales de la dynamique chaotique des systèmes planétaires en formation.
Published online:
Mots-clés : Système solaire, Modèle de Nice
Alessandro Morbidelli 1
@article{CRPHYS_2010__11_9-10_651_0, author = {Alessandro Morbidelli}, title = {A coherent and comprehensive model of the evolution of the outer {Solar} {System}}, journal = {Comptes Rendus. Physique}, pages = {651--659}, publisher = {Elsevier}, volume = {11}, number = {9-10}, year = {2010}, doi = {10.1016/j.crhy.2010.11.001}, language = {en}, }
Alessandro Morbidelli. A coherent and comprehensive model of the evolution of the outer Solar System. Comptes Rendus. Physique, Interactions between radiofrequency signals and living organisms, Volume 11 (2010) no. 9-10, pp. 651-659. doi : 10.1016/j.crhy.2010.11.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.11.001/
[1] P.S. Laplace, Expositions du système du monde Imprimerie Cercle-Social, Paris, 1796.
[2] Some dynamical aspects of the accretion of Uranus and Neptune – The exchange of orbital angular momentum with planetesimals, Icarus, Volume 58 (1984), pp. 109-120
[3] et al. Comets II (M. Festou; H.A. Weaver; F. Keller, eds.), University of Arizona Press, Tucson, 2004, pp. 153-174
[4] Scattered comet disk and the origin of Jupiter family comets, Science, Volume 276 (1997), pp. 1670-1672
[5] Orbital evolution of planets embedded in a planetesimal disk, The Astronomical Journal, Volume 117 (1999), pp. 3041-3053
[6] Planetary migration in a planetesimal disk: Why did Neptune stop at 30 AU?, Icarus, Volume 170 (2004), pp. 492-507
[7] Formation of planetary embryos – Effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination, Icarus, Volume 106 (1993), pp. 190-201
[8] et al. Constructing the secular architecture of the Solar System. I. The giant planets, Astronomy and Astrophysics, Volume 507 (2009), pp. 1041-1052
[9] Excitation of orbital eccentricities by repeated resonance crossings: Requirements, The Astrophysical Journal, Volume 584 (2003), pp. 465-471
[10] The formation of Uranus and Neptune in the Jupiter–Saturn region of the Solar System, Nature, Volume 402 (1999), pp. 635-638
[11] et al. Could the Lunar “Late Heavy Bombardment” have been triggered by the formation of Uranus and Neptune?, Icarus, Volume 151 (2001), pp. 286-306
[12] et al. Protostars and Planets V, University of Arizona Press, Tucson, 2007, pp. 669-684
[13] et al. Origin of the orbital architecture of the giant planets of the Solar System, Nature, Volume 435 (2005), pp. 459-461
[14] et al. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets, Nature, Volume 435 (2005), pp. 466-469
[15] The primordial excitation and clearing of the asteroid belt – Revisited, Icarus, Volume 191 (2007), pp. 434-452
[16] Essai sur le problème des trois corps, Oeuvres de Lagrange, Tome 6, Chapitre II, Gauthier-Villars, Paris, 1873, pp. 272-292
[17] Neptune Trojans as a test bed for planet formation, The Astrophysical Journal, Volume 628 (2005), pp. 520-532
[18] et al. Chaotic capture of Jupiter's Trojan asteroids in the early Solar System, Nature, Volume 435 (2005), pp. 462-465
[19] Dynamical effects of planetary migration on primordial Trojan-type asteroids, The Astronomical Journal, Volume 116 (1998), pp. 2590-2597
[20] Planetary migration and the effects of mean motion resonances on Jupiter's Trojan asteroids, The Astronomical Journal, Volume 122 (2001), pp. 3485-3491
[21] et al. Asteroids III (W.F. Bottke et al., eds.), University of Arizona Press, Tucson, 2002, pp. 725-738
[22] Physical properties of trans-Neptunian object (20000) Varuna, The Astronomical Journal, Volume 123 (2002), pp. 2110-2120
[23] New contributions to the problem of capture, Icarus, Volume 30 (1977), pp. 385-401
[24] Gas-drag-assisted capture of Himalia's family, Icarus, Volume 167 (2004), pp. 369-381
[25] An efficient, low-velocity, resonant mechanism for capture of satellites by a protoplanet, Icarus, Volume 175 (2005), pp. 409-418
[26] Capture of irregular satellites during planetary encounters, The Astronomical Journal, Volume 133 (2007), pp. 1962-1976
[27] et al. The irregular satellites: The most collisionally evolved populations in the Solar System, The Astronomical Journal, Volume 139 (2010), pp. 994-1014
[28] et al. Constructing the secular architecture of the Solar System II: the terrestrial planets, Astronomy and Astrophysics, Volume 507 (2009), pp. 1053-1065
[29] Evidence from the asteroid belt for a violent past evolution of Jupiter's orbit, The Astronomical Journal, Volume 140 (2010), pp. 1391-1401
[30] On the AU Microscopii debris disk. Density profiles, grain properties, and dust dynamics, Astronomy and Astrophysics, Volume 455 (2006), pp. 987-999
[31] Stellar encounters as the origin of distant Solar System objects in highly eccentric orbits, Nature, Volume 432 (2004), pp. 598-602
[32] et al. Photoevaporation of circumstellar disks due to external far-ultraviolet radiation in stellar aggregates, The Astrophysical Journal, Volume 611 (2004), pp. 360-379
[33] Streaming instabilities in protoplanetary disks, The Astrophysical Journal, Volume 620 (2005), pp. 459-469
[34] et al. Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune, Icarus, Volume 196 (2008), pp. 258-273
[35] Reversing type II migration: resonance trapping of a lighter giant protoplanet, Monthly Notices of the Royal Astronomical Society, Volume 320 (2001), pp. 55-59
[36] Constraints on resonant-trapping for two planets embedded in a protoplanetary disc, Astronomy and Astrophysics, Volume 482 (2008), pp. 333-340
[37] The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk, Icarus, Volume 191 (2007), pp. 158-171
[38] et al. Origin of the Asteroid Belt and Mars' Small Mass, DPS (2010), p. 04.02
[39] et al. Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture, The Astronomical Journal, Volume 134 (2007), pp. 1790-1798
[40] The distribution of mass in the planetary system and solar nebula, Astrophysics and Space Science, Volume 51 (1977), pp. 153-158
[41] Early dynamical evolution of the Solar System: Pinning down the initial condition of the Nice model, The Astrophysical Journal, Volume 716 (2010), pp. 1323-1331
[42] H.F. Levison, et al., Reevaluating the early dynamical evolution of the outer planets, in preparation.
Cited by Sources:
Comments - Policy