Comptes Rendus
Ion acceleration in antiparallel collisionless magnetic reconnection: Kinetic and fluid aspects
[Accélération des ions dans la reconnexion magnétique antiparallèle, aspects cinétiques et fluides]
Comptes Rendus. Physique, Volume 12 (2011) no. 2, pp. 141-150.

A lʼaide dʼun code de simulation hybride bi-dimensionnel, nous étudions la zone de découplage ionique créée lors de la reconnexion magnétique non collisionnelle. Nous examinons les conséquences fluides des phénomènes cinétiques observés et discutons dans quelle mesure ils peuvent être expliqués dʼun point de vue fluide. La configuration initiale est une couche de courant antiparallèle dans un plasma de densité homogène. Nous discutons les différentes forces agissant sur le fluide ionique et montrons que les deux contributions dominantes sont la force électrique Hall et la force de pression agissant lʼune contre lʼautre. Lʼéquilibre dynamique, qui peut également se trouver dans des simulations fluides, est ici engendré par un effet cinétique. Nous étudions donc cette force de pression par une analyse des fonctions de distribution et montrons que celles-ci résultent dʼun mouvement de rebond électrostatique des ions sur les séparatrices. Ce mouvement de rebond est caractéristique de la zone de découplage ionique et le tenseur de pression des ions en résultant peut alors être considéré comme une nouvelle observable de la reconnexion magnétique non collisionnelle dans les données obtenues par satellite.

Using a two-dimensional hybrid simulation code, we study the ion acceleration in the vicinity of the ion decoupling region of collisionless magnetic reconnection. We investigate the fluid consequences of the observed kinetic phenomena and discuss to what extent it could be accounted for in fluid modeling. The initial setup is an antiparallel current sheet in a plasma with homogeneous density. We discuss the different forces acting on the ion bulk and show that the two dominant ones are the Hall electric force and the pressure force acting against each others. A dynamic equilibrium, which might also exist in fluid simulations, is here given by a kinetic effect. We therefore explain this pressure by an analysis of the ion distribution function and show that these are the result of an electrostatic bounce motion of the particles between the separatrices. This bounce motion is a characteristic of the ion decoupling region and therefore the resulting pattern of the pressure tensor may be considered as an additional observable feature of antiparallel reconnection in satellite data.

Publié le :
DOI : 10.1016/j.crhy.2010.11.004
Keywords: Magnetic reconnection, Ion acceleration, Fluid and kinetic physics
Mot clés : Reconnexion magnétique, Accélération ionique, Physique fluide et cinétique
Nicolas Aunai 1 ; Gérard Belmont 1 ; Roch Smets 1

1 Laboratoire de physique des plasmas, École polytechnique, route de Saclay 91128 Palaiseau cedex, France
@article{CRPHYS_2011__12_2_141_0,
     author = {Nicolas Aunai and G\'erard Belmont and Roch Smets},
     title = {Ion acceleration in antiparallel collisionless magnetic reconnection: {Kinetic} and fluid aspects},
     journal = {Comptes Rendus. Physique},
     pages = {141--150},
     publisher = {Elsevier},
     volume = {12},
     number = {2},
     year = {2011},
     doi = {10.1016/j.crhy.2010.11.004},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Aunai
AU  - Gérard Belmont
AU  - Roch Smets
TI  - Ion acceleration in antiparallel collisionless magnetic reconnection: Kinetic and fluid aspects
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 141
EP  - 150
VL  - 12
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.11.004
LA  - en
ID  - CRPHYS_2011__12_2_141_0
ER  - 
%0 Journal Article
%A Nicolas Aunai
%A Gérard Belmont
%A Roch Smets
%T Ion acceleration in antiparallel collisionless magnetic reconnection: Kinetic and fluid aspects
%J Comptes Rendus. Physique
%D 2011
%P 141-150
%V 12
%N 2
%I Elsevier
%R 10.1016/j.crhy.2010.11.004
%G en
%F CRPHYS_2011__12_2_141_0
Nicolas Aunai; Gérard Belmont; Roch Smets. Ion acceleration in antiparallel collisionless magnetic reconnection: Kinetic and fluid aspects. Comptes Rendus. Physique, Volume 12 (2011) no. 2, pp. 141-150. doi : 10.1016/j.crhy.2010.11.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.11.004/

[1] E.N. Parker Journal of Geophysical Research, 62 (1957), p. 509

[2] J. Birn et al. Geospace Environmental Modeling (GEM) magnetic reconnection challenge, Journal of Geophysical Research, Volume 106 (2001), pp. 3715-3720

[3] M.E. Mandt; R.E. Denton; J.F. Drake Transition to whistler mediated magnetic reconnection, Geophysical Research Letters, Volume 21 (1994), pp. 73-76

[4] J.F. Drake; M.A. Shay; M. Swisdak The Hall fields and fast magnetic reconnection, Physics of Plasmas, Volume 15 (2008), p. 042306

[5] M.A. Shay et al. Alfvénic collisionless magnetic reconnection and the Hall term, Journal of Geophysical Research, Volume 106 (2001), pp. 3759-3772

[6] M.A. Shay et al. The scaling of embedded collisionless reconnection, Physics of Plasmas, Volume 11 (2004), pp. 2199-2213

[7] L. Yin; D. Winske Plasma pressure tensor effects on reconnection: Hybrid and Hall-magnetohydrodynamics simulations, Physics of Plasmas, Volume 10 (2003), pp. 1595-1604

[8] M.A. Shay et al. Structure of the dissipation region during collisionless magnetic reconnection, Journal of Geophysical Research, Volume 103 (1998), pp. 9165-9176

[9] M.A. Shay et al. The collisionless magnetic reconnection for large systems, Geophysical Research Letters, Volume 26 (1999), pp. 2163-2166

[10] M. Hosino et al. Ion dynamics in magnetic reconnection: comparison between numerical simulations and Geotail observations, Journal of Geophysical Research, Volume 103 (1998), pp. 4509-4530

[11] K. Arzner; M. Scholer Kinetic structure of the post plasmoid plasma sheet during magnetotail reconnection, Journal of Geophysical Research, Volume 106 (2001), pp. 3827-3844

[12] R.-F. Lottermoser; M. Scholer; A.P. Matthews Ion kinetic effects in magnetic reconnection: Hybrid simulations, Journal of Geophysical Research, Volume 102 (1998), pp. 4547-4560

[13] L.R. Lyons; T.W. Speiser Evidence for current sheet acceleration in the geomagnetic tail, Journal of Geophysical Research, Volume 87 (1982), pp. 2276-2286

[14] R. Smets; D. Delcourt; D. Fontaine Ion and electron distribution functions in the distant magnetotail: Modeling of Geotail observations, Journal of Geophysical Research, Volume 103 (1998), pp. 20407-20417

[15] T.W. Speiser Particle trajectories in model current sheets 1. Analytical solutions, Journal of Geophysical Research, Volume 70 (1965), pp. 4219-4226

[16] M.M. Kuznetsova; M. Hesse; D. Winske Ion dynamics in a hybrid simulation of magnetotail reconnection, Journal of Geophysical Research, Volume 101 (1996), pp. 27351-27374

[17] T. Nagai Geotail observations of the Hall current system: Evidence of magnetic reconnection in the magnetotail, Journal of Geophysical Research, Volume 106 (2001), pp. 25929-25950

[18] F.S. Mozer; S.D. Bale; T.D. Phan Evidence of diffusion regions at a subsolar magnetopause crossing, Physical Review Letters, Volume 89 (2002)

[19] A. Vaivads et al. Structure of the magnetic reconnection diffusion region from four-spacecraft observations, Physical Review Letters, Volume 93 (2004)

[20] J.R. Wygant Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region, Journal of Geophysical Research, Volume 110 (2005), p. 9206

[21] J.P. Eastwood Multi-point observations of the Hall electromagnetic field and secondary island formation during magnetic reconnection, Journal of Geophysical Research, Volume 112 (2007)

[22] W. Pei; R. Horiuchi; T. Sato Ion dynamics in steady collisionless driven reconnection, Physical Review Letters, Volume 87 (2001), p. 235003

[23] T. Nagai Counterstreaming ions as evidence of magnetic reconnection in the recovery phase of substorms at the kinetic level, Physics of Plasmas, Volume 9 (2002), pp. 3705-3711

[24] J.T. Gosling et al. Direct evidence for magnetic reconnection in the solar wind near 1 AU, Journal of Geophysical Research, Volume 110 (2005), p. 1107

[25] J.F. Drake et al. Ion heating resulting from pickup in magnetic reconnection exhausts, Journal of Geophysical Research, Volume 114 (2009), p. 5111

[26] N. Singh et al. Features of electron current layers: Comparison between three-dimensional particle-in-cell simulations and Cluster observations, Journal of Geophysical Research, Volume 115 (2010), p. 4203

[27] D.S. Harned Quasineutral hybrid simulation of macroscopic plasma phenomena, Journal of Computational Physics, Volume 47 (1982), pp. 452-462

[28] R. Smets et al. Diffusion at the Earth magnetopause: enhancement by Kelvin–Helmholtz instability, Annales Geophysicae, Volume 25 (2007), pp. 271-282

[29] A.S. Lipatov The Hybrid Multiscale Simulation Technology, Springer, 2002

[30] P.A. Cassak, Catastrophe model for the onset of fast magnetic reconnection, PhD Thesis.

[31] K. Fujimoto; R.D. Sydora Whistler waves associated with magnetic reconnection, Geophysical Research Letters, Volume 35 (2008), p. 19112

[32] E.G. Harris Nuovo Cimento, 23 (1962), p. 115

[33] H. Karimabadi Multiscale structure of the electron diffusion region, Geophysical Research Letters, Volume 34 (2007)

[34] J.P. Eastwood et al. Asymmetry of the ion diffusion region hall electric and magnetic fields during guide field reconnection: Observations and comparison with simulations, Physical Review Letters, Volume 104 (2010)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Acceleration mechanisms 2: force-free reconnection

Stirling A. Colgate; Hui Li

C. R. Phys (2004)