We investigate the electronic transport through a suspended carbon-nanotube quantum dot. In the presence of a magnetic field perpendicular to the nanotube and a nearby metallic gate, two forces act on the electrons: the Laplace and the electrostatic force. They both induce coupling between the electrons and the mechanical transverse oscillation modes. We find that the difference between the two mechanisms appears in the cotunneling current.
Nous étudions le transport électronique à travers un point quantique formé avec un nanotube de carbone suspendu. En présence dʼun champ magnétique perpendiculaire au nanotube et dʼune grille métallique, deux forces agissent sur les électrons : la force de Laplace et la force électrostatique. Elles induisent toutes les deux un couplage entre les électrons et les modes dʼoscillations mécaniques transverses. Nous trouvons quʼune différence entre les deux mécanismes de couplage se manifeste à des ordres supérieurs dans le courant tunnel.
Mot clés : Polaron, Boîte quantique, Système nano-électromécanique
G. Rastelli 1; M. Houzet 2; L. Glazman 3; F. Pistolesi 4, 5
@article{CRPHYS_2012__13_5_410_0, author = {G. Rastelli and M. Houzet and L. Glazman and F. Pistolesi}, title = {Interplay of magneto-elastic and polaronic effects in electronic transport through suspended carbon-nanotube quantum dots}, journal = {Comptes Rendus. Physique}, pages = {410--425}, publisher = {Elsevier}, volume = {13}, number = {5}, year = {2012}, doi = {10.1016/j.crhy.2012.03.001}, language = {en}, }
TY - JOUR AU - G. Rastelli AU - M. Houzet AU - L. Glazman AU - F. Pistolesi TI - Interplay of magneto-elastic and polaronic effects in electronic transport through suspended carbon-nanotube quantum dots JO - Comptes Rendus. Physique PY - 2012 SP - 410 EP - 425 VL - 13 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2012.03.001 LA - en ID - CRPHYS_2012__13_5_410_0 ER -
%0 Journal Article %A G. Rastelli %A M. Houzet %A L. Glazman %A F. Pistolesi %T Interplay of magneto-elastic and polaronic effects in electronic transport through suspended carbon-nanotube quantum dots %J Comptes Rendus. Physique %D 2012 %P 410-425 %V 13 %N 5 %I Elsevier %R 10.1016/j.crhy.2012.03.001 %G en %F CRPHYS_2012__13_5_410_0
G. Rastelli; M. Houzet; L. Glazman; F. Pistolesi. Interplay of magneto-elastic and polaronic effects in electronic transport through suspended carbon-nanotube quantum dots. Comptes Rendus. Physique, Volume 13 (2012) no. 5, pp. 410-425. doi : 10.1016/j.crhy.2012.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.03.001/
[1] Nano-mechanical oscillations in a single-C60 transistor, Nature, Volume 407 (2000), p. 57
[2] A tunable carbon nanotube electromechanical oscillator, Nature, Volume 431 (2004), p. 284
[3] Carbon nanotubes as ultrahigh quality factor mechanical resonators, Nano Lett., Volume 9 (2009), p. 2447
[4] Coupling mechanics to charge transport in carbon nanotube mechanical resonators, Science, Volume 325 (2009), p. 1107
[5] Strong coupling between single-electron tunneling and nanomechanical motion, Science, Volume 325 (2009), p. 1103
[6] Scanning tunneling spectroscopy of suspended single-wall carbon nanotubes, Appl. Phys. Lett., Volume 84 (2004), p. 4280
[7] Franck–Condon blockade in suspended carbon nanotube quantum dots, Nat. Phys., Volume 5 (2009), p. 327
[8] Inelastic resonant tunneling of electrons through a potential barrier, Soviet Phys. – JETP, Volume 67 (1988) no. 1, p. 163
[9] Inelastic scattering in resonant tunneling, Phys. Rev. B, Volume 40 (1989) no. 17, pp. 11834-11850
[10] Influence of nanomechanical properties on single-electron tunneling: A vibrating single-electron transistor, Europhys. Lett., Volume 54 (2001), p. 668
[11] Incoherent dynamics of vibrating single-molecule transistors, Phys. Rev. B, Volume 67 (2003), p. 245415
[12] Vibrational sidebands and dissipative tunneling in molecular transistors, Phys. Rev. B, Volume 68 (2003), p. 205324
[13] Phonon effects in molecular transistors: Quantal and classical treatment, Phys. Rev. B, Volume 69 (2004), p. 245302
[14] Phonon-mediated negative differential conductance in molecular quantum dots, Phys. Rev. B, Volume 73 (2006) no. 11, p. 115405
[15] Vibration-induced correction to the current through a single molecule, Phys. Rev. B, Volume 77 (2008), p. 113405
[16] Franck–Condon blockade and giant Fano factors in transport through single molecules, Phys. Rev. Lett., Volume 94 (2005), p. 206804
[17] Electrical transport through a single-electron transistor strongly coupled to an oscillator, Phys. Rev. B, Volume 74 (2006), p. 205336
[18] Intermittent polaron dynamics: Born–Oppenheimer approximation out of equilibrium, Phys. Rev. B, Volume 73 (2006) no. 3, p. 035104
[19] Current blockade in classical single electron nano-mechanical resonator, Phys. Rev. B, Volume 76 (2007), p. 165317
[20] Self-consistent theory of molecular switching, Phys. Rev. B, Volume 78 (2008) no. 8, p. 085127
[21] Discontinuous Euler instability in nanoelectromechanical systems, Phys. Rev. B, Volume 81 (2010), p. 121409
[22] Euler buckling instability and enhanced current blockade in suspended single-electron transistors, Phys. Rev. B, Volume 83 (2011), p. 035420
[23] Electronic Aharonov–Bohm effect induced by quantum vibrations, Phys. Rev. Lett., Volume 97 (2006), p. 156801
[24] Temperature-independent current deficit due to induced quantum nanowire vibrations, New J. Phys., Volume 11 (2009) no. 7, p. 073037
[25] Resonant magneto-conductance of a suspended carbon nanotube quantum dot, EPL (Europhys. Lett.), Volume 89 (2010) no. 5, p. 57003
[26] Magnetopolaronic effects in electron transport through a single-level vibrating quantum dot, Low Temp. Phys., Volume 37 (2011), p. 1295
[27] Theory of the Franck–Condon blockade regime, Phys. Rev. B, Volume 74 (2006) no. 20, p. 205438
[28] Cooling a vibrational mode coupled to a molecular single-electron transistor, J. Low Temp. Phys., Volume 154 (2009), pp. 199-210
[29] Theory of Elasticity, Elsevier, 1986
[30] Carbon nanotubes as nanoelectromechanical systems, Phys. Rev. B, Volume 67 (2003), p. 235414
[31] Electron–vibron coupling in suspended nanotubes, New J. Phys., Volume 8 (2006) no. 1, p. 5
[32] Transport through a molecular quantum dot in the polaron crossover regime, Phys. Rev. B, Volume 76 (2007) no. 3, p. 033417
[33] Real-time path integral approach to nonequilibrium many-body quantum systems, Phys. Rev. Lett., Volume 100 (2008), p. 176403
[34] Memory effect in a molecular quantum dot with strong electron–vibron interaction, Phys. Rev. B, Volume 67 (2003), p. 235312
[35] Electronic and transport properties of nanotubes, Rev. Mod. Phys., Volume 79 (2007), pp. 677-732
[36] Coulomb blockade of resonant tunneling, Phys. Rev. B, Volume 50 (1994), pp. 18288-18298
[37] Coulomb correlations in the tunneling through resonance centers, JETP Lett., Volume 48 (1988), p. 445
Cited by Sources:
Comments - Policy