Comptes Rendus
Interplay of magneto-elastic and polaronic effects in electronic transport through suspended carbon-nanotube quantum dots
Comptes Rendus. Physique, Volume 13 (2012) no. 5, pp. 410-425.

We investigate the electronic transport through a suspended carbon-nanotube quantum dot. In the presence of a magnetic field perpendicular to the nanotube and a nearby metallic gate, two forces act on the electrons: the Laplace and the electrostatic force. They both induce coupling between the electrons and the mechanical transverse oscillation modes. We find that the difference between the two mechanisms appears in the cotunneling current.

Nous étudions le transport électronique à travers un point quantique formé avec un nanotube de carbone suspendu. En présence dʼun champ magnétique perpendiculaire au nanotube et dʼune grille métallique, deux forces agissent sur les électrons : la force de Laplace et la force électrostatique. Elles induisent toutes les deux un couplage entre les électrons et les modes dʼoscillations mécaniques transverses. Nous trouvons quʼune différence entre les deux mécanismes de couplage se manifeste à des ordres supérieurs dans le courant tunnel.

Published online:
DOI: 10.1016/j.crhy.2012.03.001
Keywords: Polaron, Quantum dot, Nano-electromechanical system
Mot clés : Polaron, Boîte quantique, Système nano-électromécanique

G. Rastelli 1; M. Houzet 2; L. Glazman 3; F. Pistolesi 4, 5

1 Univ. Grenoble 1/CNRS, LPMMC UMR 5493, maison des magistères, 38042 Grenoble, France
2 SPSMS, UMR-E 9001 CEA/UJF-Grenoble 1, INAC, 38054 Grenoble, France
3 Departments of Physics, Yale University, New Haven, CT 06520, USA
4 Univ. Bordeaux, LOMA, UMR 5798, 33400 Talence, France
5 CNRS, LOMA, UMR 5798, 33400 Talence, France
@article{CRPHYS_2012__13_5_410_0,
     author = {G. Rastelli and M. Houzet and L. Glazman and F. Pistolesi},
     title = {Interplay of magneto-elastic and polaronic effects in electronic transport through suspended carbon-nanotube quantum dots},
     journal = {Comptes Rendus. Physique},
     pages = {410--425},
     publisher = {Elsevier},
     volume = {13},
     number = {5},
     year = {2012},
     doi = {10.1016/j.crhy.2012.03.001},
     language = {en},
}
TY  - JOUR
AU  - G. Rastelli
AU  - M. Houzet
AU  - L. Glazman
AU  - F. Pistolesi
TI  - Interplay of magneto-elastic and polaronic effects in electronic transport through suspended carbon-nanotube quantum dots
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 410
EP  - 425
VL  - 13
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.03.001
LA  - en
ID  - CRPHYS_2012__13_5_410_0
ER  - 
%0 Journal Article
%A G. Rastelli
%A M. Houzet
%A L. Glazman
%A F. Pistolesi
%T Interplay of magneto-elastic and polaronic effects in electronic transport through suspended carbon-nanotube quantum dots
%J Comptes Rendus. Physique
%D 2012
%P 410-425
%V 13
%N 5
%I Elsevier
%R 10.1016/j.crhy.2012.03.001
%G en
%F CRPHYS_2012__13_5_410_0
G. Rastelli; M. Houzet; L. Glazman; F. Pistolesi. Interplay of magneto-elastic and polaronic effects in electronic transport through suspended carbon-nanotube quantum dots. Comptes Rendus. Physique, Volume 13 (2012) no. 5, pp. 410-425. doi : 10.1016/j.crhy.2012.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.03.001/

[1] H. Park; J. Park; A.K.L. Lim; E.H. Anderson; A.P. Alivisatos; P.L. McEuen Nano-mechanical oscillations in a single-C60 transistor, Nature, Volume 407 (2000), p. 57

[2] V. Sazonova; Y. Yaish; H. Ustunel; D. Roundy; A. Arias; P.M. McEuen A tunable carbon nanotube electromechanical oscillator, Nature, Volume 431 (2004), p. 284

[3] A.K. Huettel; G.A. Steele; B. Witkamp; M. Poot; L.P. Kouwenhoven; H.S.J. van der Zant Carbon nanotubes as ultrahigh quality factor mechanical resonators, Nano Lett., Volume 9 (2009), p. 2447

[4] B. Lassagne; Y. Tarakanov; J. Kinaret; D. Garcia-Sanchez; A. Bachtold Coupling mechanics to charge transport in carbon nanotube mechanical resonators, Science, Volume 325 (2009), p. 1107

[5] G.A. Steele; A.K. Huettel; B. Witkamp; M. Poot; B. Meerwaldt; L.P. Kouwenhoven; H.S.J. van der Zant Strong coupling between single-electron tunneling and nanomechanical motion, Science, Volume 325 (2009), p. 1103

[6] B.J. LeRoy; S.G. Lemay; J. Kong; C. Dekker Scanning tunneling spectroscopy of suspended single-wall carbon nanotubes, Appl. Phys. Lett., Volume 84 (2004), p. 4280

[7] R. Leturcq; C. Stampfer; K. Inderbitzin; L. Durrer; C. Hierold; E. Mariani; M.G. Schultz; F. von Oppen; K. Ensslin Franck–Condon blockade in suspended carbon nanotube quantum dots, Nat. Phys., Volume 5 (2009), p. 327

[8] L.I. Glazman; R.I. Shekhter Inelastic resonant tunneling of electrons through a potential barrier, Soviet Phys. – JETP, Volume 67 (1988) no. 1, p. 163

[9] N.S. Wingreen; K.W. Jacobsen; J.W. Wilkins Inelastic scattering in resonant tunneling, Phys. Rev. B, Volume 40 (1989) no. 17, pp. 11834-11850

[10] D. Boese; H. Schoeller Influence of nanomechanical properties on single-electron tunneling: A vibrating single-electron transistor, Europhys. Lett., Volume 54 (2001), p. 668

[11] K.D. McCarthy; N. Prokofʼev; M.T. Tuominen Incoherent dynamics of vibrating single-molecule transistors, Phys. Rev. B, Volume 67 (2003), p. 245415

[12] S. Braig; K. Flensberg Vibrational sidebands and dissipative tunneling in molecular transistors, Phys. Rev. B, Volume 68 (2003), p. 205324

[13] A. Mitra; I. Aleiner; A.J. Millis Phonon effects in molecular transistors: Quantal and classical treatment, Phys. Rev. B, Volume 69 (2004), p. 245302

[14] A. Zazunov; D. Feinberg; T. Martin Phonon-mediated negative differential conductance in molecular quantum dots, Phys. Rev. B, Volume 73 (2006) no. 11, p. 115405

[15] R. Egger; A.O. Gogolin Vibration-induced correction to the current through a single molecule, Phys. Rev. B, Volume 77 (2008), p. 113405

[16] J. Koch; F. von Oppen Franck–Condon blockade and giant Fano factors in transport through single molecules, Phys. Rev. Lett., Volume 94 (2005), p. 206804

[17] C.B. Doiron; W. Belzig; C. Bruder Electrical transport through a single-electron transistor strongly coupled to an oscillator, Phys. Rev. B, Volume 74 (2006), p. 205336

[18] D. Mozyrsky; M.B. Hastings; I. Martin Intermittent polaron dynamics: Born–Oppenheimer approximation out of equilibrium, Phys. Rev. B, Volume 73 (2006) no. 3, p. 035104

[19] F. Pistolesi; S. Labarthe Current blockade in classical single electron nano-mechanical resonator, Phys. Rev. B, Volume 76 (2007), p. 165317

[20] F. Pistolesi; Ya.M. Blanter; I. Martin Self-consistent theory of molecular switching, Phys. Rev. B, Volume 78 (2008) no. 8, p. 085127

[21] G. Weick; F. Pistolesi; E. Mariani; F. von Oppen Discontinuous Euler instability in nanoelectromechanical systems, Phys. Rev. B, Volume 81 (2010), p. 121409

[22] G. Weick; F. von Oppen; F. Pistolesi Euler buckling instability and enhanced current blockade in suspended single-electron transistors, Phys. Rev. B, Volume 83 (2011), p. 035420

[23] R.I. Shekhter; L.Y. Gorelik; L.I. Glazman; M. Jonson Electronic Aharonov–Bohm effect induced by quantum vibrations, Phys. Rev. Lett., Volume 97 (2006), p. 156801

[24] G. Sonne Temperature-independent current deficit due to induced quantum nanowire vibrations, New J. Phys., Volume 11 (2009) no. 7, p. 073037

[25] G. Rastelli; M. Houzet; F. Pistolesi Resonant magneto-conductance of a suspended carbon nanotube quantum dot, EPL (Europhys. Lett.), Volume 89 (2010) no. 5, p. 57003

[26] G.A. Skorobagatko; S.I. Kulinich; I.V. Krive; R.I. Shekhter; M. Jonson Magnetopolaronic effects in electron transport through a single-level vibrating quantum dot, Low Temp. Phys., Volume 37 (2011), p. 1295

[27] J. Koch; F. von Oppen; A.V. Andreev Theory of the Franck–Condon blockade regime, Phys. Rev. B, Volume 74 (2006) no. 20, p. 205438

[28] F. Pistolesi Cooling a vibrational mode coupled to a molecular single-electron transistor, J. Low Temp. Phys., Volume 154 (2009), pp. 199-210

[29] L.D. Landau; E.M. Lifshitz Theory of Elasticity, Elsevier, 1986

[30] S. Sapmaz; Ya.M. Blanter; L. Gurevich; H.S.J. van der Zant Carbon nanotubes as nanoelectromechanical systems, Phys. Rev. B, Volume 67 (2003), p. 235414

[31] K. Flensberg Electron–vibron coupling in suspended nanotubes, New J. Phys., Volume 8 (2006) no. 1, p. 5

[32] A. Zazunov; T. Martin Transport through a molecular quantum dot in the polaron crossover regime, Phys. Rev. B, Volume 76 (2007) no. 3, p. 033417

[33] L. Mühlbacher; E. Rabani Real-time path integral approach to nonequilibrium many-body quantum systems, Phys. Rev. Lett., Volume 100 (2008), p. 176403

[34] A.S. Alexandrov; A.M. Bratkovsky Memory effect in a molecular quantum dot with strong electron–vibron interaction, Phys. Rev. B, Volume 67 (2003), p. 235312

[35] J.-C. Charlier; X. Blase; S. Roche Electronic and transport properties of nanotubes, Rev. Mod. Phys., Volume 79 (2007), pp. 677-732

[36] H.T. Imam; V.V. Ponomarenko; D.V. Averin Coulomb blockade of resonant tunneling, Phys. Rev. B, Volume 50 (1994), pp. 18288-18298

[37] L.I. Glazman; K.A. Matveev Coulomb correlations in the tunneling through resonance centers, JETP Lett., Volume 48 (1988), p. 445

Cited by Sources:

Comments - Policy