[Dynamique quantique dʼun résonateur mécanique forcé par une cavité]
Nous explorons la dynamique quantique dʼun résonateur mécanique dont la position est couplée à la fréquence dʼun mode optique (ou micro-onde) de cavité. Quand la cavité est forcée à une fréquence au-dessus de la résonance, le résonateur mécanique peut gagner de lʼénergie et, pour un couplage suffisamment fort, ceci a comme conséquence des oscillations de cycle limite. En utilisant une approche de fonctions de Wigner tronquées, qui rend compte des fluctuations de point zéro dans le système, nous développons un traitement analytique approximatif de la dynamique du résonateur dans le régime de cycle limite. Nous constatons que les oscillations de cycle limite produites par la cavité sont associées à des niveaux des fluctuations dʼénergie dans le résonateur plutôt bas. Comparé à un résonateur à la même température qui est forcé par un signal harmonique pur à une énergie moyenne donnée, les oscillations forcées par la cavité peuvent avoir des fluctuations dʼénergie bien inférieures. En outre, aux températures suffisamment basses, la cavité peut forcer le résonateur dans un état non-classique.
We explore the quantum dynamics of a mechanical resonator whose position is coupled to the frequency of an optical (or microwave) cavity mode. When the cavity is driven at a frequency above resonance the mechanical resonator can gain energy and for sufficiently strong coupling this results in limit-cycle oscillations. Using a truncated Wigner function approach, which captures the zero-point fluctuations in the system, we develop an approximate analytic treatment of the resonator dynamics in the limit-cycle regime. We find that the limit-cycle oscillations produced by the cavity are associated with rather low levels of energy fluctuations in the resonator. Compared to a resonator at the same temperature which is driven by a pure harmonic drive to a given average energy, the cavity-driven oscillations can have much lower energy fluctuations. Furthermore, at sufficiently low temperatures, the cavity can drive the resonator into a non-classical state which is number-squeezed.
Mots-clés : Dynamique quantique, Résonateur mécanique, Systèmes optomécaniques
Andrew D. Armour 1 ; Denzil A. Rodrigues 1
@article{CRPHYS_2012__13_5_440_0, author = {Andrew D. Armour and Denzil A. Rodrigues}, title = {Quantum dynamics of a mechanical resonator driven by a cavity}, journal = {Comptes Rendus. Physique}, pages = {440--453}, publisher = {Elsevier}, volume = {13}, number = {5}, year = {2012}, doi = {10.1016/j.crhy.2012.03.006}, language = {en}, }
Andrew D. Armour; Denzil A. Rodrigues. Quantum dynamics of a mechanical resonator driven by a cavity. Comptes Rendus. Physique, Advances in nano-electromechanical systems, Volume 13 (2012) no. 5, pp. 440-453. doi : 10.1016/j.crhy.2012.03.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.03.006/
[1] Science, 321 (2008), p. 1172
[2] Nature Photon., 3 (2009), p. 201
[3] Physics, 2 (2009) no. 40
[4] Phys. Rev. A, 59 (1999), p. 3204
[5] New J. Phys., 10 (2008), p. 095001
[6] Phys. Rep., 511 (2012), p. 273
[7] Phys. Rev. Lett., 97 (2006), p. 133601
[8] Phys. Rev. Lett., 99 (2007), p. 093901
[9] Phys. Rev. Lett., 99 (2007), p. 093902
[10] Phys. Rev. B, 76 (2007), p. 014511
[11] Phys. Rev. A, 77 (2008), p. 033804
[12] Nature, 444 (2006), p. 71
[13] Nature, 452 (2008), p. 72
[14] Nature Phys., 5 (2009), p. 509
[15] Nature Phys., 5 (2009), p. 485
[16] Nature, 478 (2011), p. 89
[17] Nature, 463 (2010), p. 72
[18] Nature, 475 (2011), p. 359
[19] Phys. Rev. Lett., 94 (2005), p. 223902
[20] Phys. Rev. Lett., 101 (2008), p. 133903
[21] Nature Phys., 5 (2009), p. 909
[22] Phys. Rev. Lett., 96 (2006), p. 103901
[23] Phys. Rev. E, 84 (2011), p. 046605
[24] arXiv
, 2011 |[25] New J. Phys., 10 (2008), p. 095013
[26] Phys. Rev. A, 78 (2008), p. 023832
[27] Phys. Rev. Lett., 104 (2010), p. 053601
[28] arXiv
|[29] Phys. Rev., 160 (1967), p. 290
[30] Quantum Optics, Springer-Verlag, Berlin, 1994
[31] Phys. Rev. Lett., 107 (2011), p. 063601
[32] Phys. Rev. Lett., 107 (2011), p. 063602
[33] Phys. Rev. A, 43 (1991), p. 6194
[34] Phys. Rev. B, 78 (2008), p. 024513
[35] Phys. Rev. A, 40 (1986), p. 5774
[36] Phys. Rev. Lett., 98 (2007), p. 067204
[37] Rep. Prog. Phys., 69 (2006), p. 1325
[38] J. Phys. Soc. Jpn., 65 (1996), p. 1648
[39] Nature, 444 (2006), p. 71 (See for example)
[40] Rev. Mod. Phys., 38 (1966), p. 541
[41] The Fokker–Planck Equation, Springer-Verlag, Berlin, Germany, 1989
- Self-sustained optomechanical state destruction triggered by the Kerr nonlinearity, Physical Review Research, Volume 6 (2024) no. 4 | DOI:10.1103/physrevresearch.6.043038
- Quantum properties near the instability boundary in optomechanical system, Chinese Physics B, Volume 31 (2022) no. 3, p. 030308 | DOI:10.1088/1674-1056/ac40f7
- Multistability, staircases, and optical high-order sideband combs in optomechanics, Journal of the Optical Society of America B, Volume 37 (2020) no. 11, p. A36 | DOI:10.1364/josab.396237
- Beyond linear coupling in microwave optomechanics, Physical Review Research, Volume 2 (2020) no. 3 | DOI:10.1103/physrevresearch.2.033480
- Dynamical generation of synthetic electric fields for photons in the quantum regime, Quantum Science and Technology, Volume 4 (2019) no. 4, p. 044001 | DOI:10.1088/2058-9565/ab32a4
- Optomechanical systems close to the conservative limit, Physical Review A, Volume 95 (2017) no. 1 | DOI:10.1103/physreva.95.013831
- Synchronization of an optomechanical system to an external drive, Physical Review A, Volume 95 (2017) no. 5 | DOI:10.1103/physreva.95.053858
- Synchronization dynamics of two nanomechanical membranes within a Fabry-Perot cavity, Physical Review A, Volume 96 (2017) no. 2 | DOI:10.1103/physreva.96.023805
- Optomechanical self-oscillations in an anharmonic potential: engineering a nonclassical steady state, Journal of Optics, Volume 18 (2016) no. 9, p. 094004 | DOI:10.1088/2040-8978/18/9/094004
- Quantum nonlinear dynamics of optomechanical systems in the strong-coupling regime, Physical Review A, Volume 94 (2016) no. 6 | DOI:10.1103/physreva.94.063835
- , 2015 International Conference on Optical MEMS and Nanophotonics (OMN) (2015), p. 1 | DOI:10.1109/omn.2015.7288832
- Time-resolved phase-space tomography of an optomechanical cavity, Physical Review A, Volume 91 (2015) no. 4 | DOI:10.1103/physreva.91.043829
- Sub-Poissonian phonon lasing in three-mode optomechanics, Physical Review A, Volume 91 (2015) no. 6 | DOI:10.1103/physreva.91.061803
- MechanicalPTsymmetry in coupled optomechanical systems, Physical Review A, Volume 92 (2015) no. 1 | DOI:10.1103/physreva.92.013852
- Work extraction from heat-powered quantized optomechanical setups, Scientific Reports, Volume 5 (2015) no. 1 | DOI:10.1038/srep07809
- Intermittency in an optomechanical cavity near a subcritical Hopf bifurcation, Physical Review A, Volume 90 (2014) no. 3 | DOI:10.1103/physreva.90.033818
- Laser Theory for Optomechanics: Limit Cycles in the Quantum Regime, Physical Review X, Volume 4 (2014) no. 1 | DOI:10.1103/physrevx.4.011015
Cité par 17 documents. Sources : Crossref
Commentaires - Politique