Comptes Rendus
Quantum dynamics of a mechanical resonator driven by a cavity
[Dynamique quantique dʼun résonateur mécanique forcé par une cavité]
Comptes Rendus. Physique, Volume 13 (2012) no. 5, pp. 440-453.

Nous explorons la dynamique quantique dʼun résonateur mécanique dont la position est couplée à la fréquence dʼun mode optique (ou micro-onde) de cavité. Quand la cavité est forcée à une fréquence au-dessus de la résonance, le résonateur mécanique peut gagner de lʼénergie et, pour un couplage suffisamment fort, ceci a comme conséquence des oscillations de cycle limite. En utilisant une approche de fonctions de Wigner tronquées, qui rend compte des fluctuations de point zéro dans le système, nous développons un traitement analytique approximatif de la dynamique du résonateur dans le régime de cycle limite. Nous constatons que les oscillations de cycle limite produites par la cavité sont associées à des niveaux des fluctuations dʼénergie dans le résonateur plutôt bas. Comparé à un résonateur à la même température qui est forcé par un signal harmonique pur à une énergie moyenne donnée, les oscillations forcées par la cavité peuvent avoir des fluctuations dʼénergie bien inférieures. En outre, aux températures suffisamment basses, la cavité peut forcer le résonateur dans un état non-classique.

We explore the quantum dynamics of a mechanical resonator whose position is coupled to the frequency of an optical (or microwave) cavity mode. When the cavity is driven at a frequency above resonance the mechanical resonator can gain energy and for sufficiently strong coupling this results in limit-cycle oscillations. Using a truncated Wigner function approach, which captures the zero-point fluctuations in the system, we develop an approximate analytic treatment of the resonator dynamics in the limit-cycle regime. We find that the limit-cycle oscillations produced by the cavity are associated with rather low levels of energy fluctuations in the resonator. Compared to a resonator at the same temperature which is driven by a pure harmonic drive to a given average energy, the cavity-driven oscillations can have much lower energy fluctuations. Furthermore, at sufficiently low temperatures, the cavity can drive the resonator into a non-classical state which is number-squeezed.

Publié le :
DOI : 10.1016/j.crhy.2012.03.006
Keywords: Quantum dynamics, Mechanical resonator, Optomechanical systems
Mot clés : Dynamique quantique, Résonateur mécanique, Systèmes optomécaniques

Andrew D. Armour 1 ; Denzil A. Rodrigues 1

1 School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
@article{CRPHYS_2012__13_5_440_0,
     author = {Andrew D. Armour and Denzil A. Rodrigues},
     title = {Quantum dynamics of a mechanical resonator driven by a cavity},
     journal = {Comptes Rendus. Physique},
     pages = {440--453},
     publisher = {Elsevier},
     volume = {13},
     number = {5},
     year = {2012},
     doi = {10.1016/j.crhy.2012.03.006},
     language = {en},
}
TY  - JOUR
AU  - Andrew D. Armour
AU  - Denzil A. Rodrigues
TI  - Quantum dynamics of a mechanical resonator driven by a cavity
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 440
EP  - 453
VL  - 13
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.03.006
LA  - en
ID  - CRPHYS_2012__13_5_440_0
ER  - 
%0 Journal Article
%A Andrew D. Armour
%A Denzil A. Rodrigues
%T Quantum dynamics of a mechanical resonator driven by a cavity
%J Comptes Rendus. Physique
%D 2012
%P 440-453
%V 13
%N 5
%I Elsevier
%R 10.1016/j.crhy.2012.03.006
%G en
%F CRPHYS_2012__13_5_440_0
Andrew D. Armour; Denzil A. Rodrigues. Quantum dynamics of a mechanical resonator driven by a cavity. Comptes Rendus. Physique, Volume 13 (2012) no. 5, pp. 440-453. doi : 10.1016/j.crhy.2012.03.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.03.006/

[1] T.J. Kippenberg; K.J. Vahala Science, 321 (2008), p. 1172

[2] I. Favero; K. Karrai Nature Photon., 3 (2009), p. 201

[3] F. Marquardt; S.M. Girvin Physics, 2 (2009) no. 40

[4] S. Bose; K. Jacobs; P.L. Knight Phys. Rev. A, 59 (1999), p. 3204

[5] New J. Phys., 10 (2008), p. 095001

[6] M. Poot; H.S.J. van der Zant Phys. Rep., 511 (2012), p. 273

[7] O. Arcizet; P.-F. Cohadon; T. Briant; M. Pinard; A. Heidmann; J.-M. Mackowski; C. Michel; L. Pinard; O. Français; L. Rousseau Phys. Rev. Lett., 97 (2006), p. 133601

[8] I. Wilson-Rae; N. Nooshi; W. Zwerger; T.J. Kippenberg Phys. Rev. Lett., 99 (2007), p. 093901

[9] F. Marquardt; J.P. Chen; A.A. Clerk; S.M. Girvin Phys. Rev. Lett., 99 (2007), p. 093902

[10] M.P. Blencowe; E. Buks Phys. Rev. B, 76 (2007), p. 014511

[11] C. Genes; D. Vitali; P. Tombesi; S. Gigan; M. Aspelmeyer Phys. Rev. A, 77 (2008), p. 033804

[12] O. Arcizet; P.-F. Cohadon; T. Briant; M. Pinard; A. Heidmann Nature, 444 (2006), p. 71

[13] J.D. Thompson; B.M. Zwickl; A.M. Jayich; F. Marquardt; S.M. Girvin; J.G.E. Harris Nature, 452 (2008), p. 72

[14] A. Schliesser; A. Schliesser; O. Arcizet; R. Rivière; G. Anetsberger; T.J. Kippenberg Nature Phys., 5 (2009), p. 509

[15] S. Gröblacher; J.B. Hertzberg; M.R. Vanner; G.D. Cole; S. Gigan; K.C. Schwab; M. Aspelmeyer Nature Phys., 5 (2009), p. 485

[16] J. Chan; T.P. Mayer Alegre; A.H. Safavi-Naeini; J.T. Hill; A. Krause; S. Gröblacher; M. Aspelmeyer; O. Painter Nature, 478 (2011), p. 89

[17] T. Rocheleau; T. Ndukum; C. Macklin; J.B. Hertzberg; A.A. Clerk; K.C. Schwab Nature, 463 (2010), p. 72

[18] J.D. Teufel; T. Donner; D. Li; J.W. Harlow; M.S. Allman; K. Cicak; A.J. Sirois; J.D. Whittaker; K.W. Lehnert; R.W. Simmonds Nature, 475 (2011), p. 359

[19] T. Carmon; H. Rokhsari; L. Yang; T.J. Kippenberg; K.J. Vahala Phys. Rev. Lett., 94 (2005), p. 223902

[20] C. Metzger; M. Ludwig; C. Neuenhahn; A. Ortlieb; I. Favero; K. Karrai; F. Marquardt Phys. Rev. Lett., 101 (2008), p. 133903

[21] G. Anetsberger; O. Arcizet; Q.P. Unterreithmeier; R. Rivière; A. Schliesser; E.M. Weig; J.P. Kotthaus; T.J. Kippenberg Nature Phys., 5 (2009), p. 909

[22] F. Marquardt; J.G.E. Harris; S.M. Girvin Phys. Rev. Lett., 96 (2006), p. 103901

[23] S. Zaitsev; A.K. Pandey; O. Shtempluck; E. Buks Phys. Rev. E, 84 (2011), p. 046605

[24] S. Zaitsev; O. Gottlieb; E. Buks, 2011 | arXiv

[25] M. Ludwig; B. Kubala; F. Marquardt New J. Phys., 10 (2008), p. 095013

[26] K.J. Vahala Phys. Rev. A, 78 (2008), p. 023832

[27] D.A. Rodrigues; A.D. Armour Phys. Rev. Lett., 104 (2010), p. 053601

[28] J. Qian; A.A. Clerk; K. Hammerer; F. Marquardt | arXiv

[29] M. Lax Phys. Rev., 160 (1967), p. 290

[30] D.F. Walls; G.J. Milburn Quantum Optics, Springer-Verlag, Berlin, 1994

[31] P. Rabl Phys. Rev. Lett., 107 (2011), p. 063601

[32] A. Nunnenkamp; K. Børkje; S.M. Girvin Phys. Rev. Lett., 107 (2011), p. 063602

[33] P. Kinsler; P.D. Drummond Phys. Rev. A, 43 (1991), p. 6194

[34] T.J. Harvey; D.A. Rodrigues; A.D. Armour Phys. Rev. B, 78 (2008), p. 024513

[35] M.A.M. Marte; P. Zoller Phys. Rev. A, 40 (1986), p. 5774

[36] D.A. Rodrigues; J. Imbers; A.D. Armour Phys. Rev. Lett., 98 (2007), p. 067204

[37] H. Walther; B.T.H. Varcoe; B.-G. Englert; T. Becker Rep. Prog. Phys., 69 (2006), p. 1325

[38] H. Saito; H. Hyuga J. Phys. Soc. Jpn., 65 (1996), p. 1648

[39] O. Arcizet; P.-F. Cohadon; M. Pinard; A. Heidmann Nature, 444 (2006), p. 71 (See for example)

[40] M. Lax Rev. Mod. Phys., 38 (1966), p. 541

[41] H. Risken The Fokker–Planck Equation, Springer-Verlag, Berlin, Germany, 1989

Cité par Sources :

Commentaires - Politique