Assuming the universe is spatially homogeneous on the largest scales lays the foundation for almost all cosmology. This idea is based on the Copernican Principle, that we are not at a particularly special place in the universe. Surprisingly, this philosophical assumption has yet to be rigorously demonstrated independently of the standard paradigm. This issue has been brought to light by cosmological models which can potentially explain apparent acceleration by spatial inhomogeneity rather than dark energy. These models replace the temporal fine tuning associated with Λ with a spatial fine tuning, and so violate the Copernican assumption. While is seems unlikely that such models can really give a realistic solution to the dark energy problem, they do reveal how poorly constrained radial inhomogeneity actually is. So the bigger issue remains: How do we robustly test the Copernican Principle independently of dark energy or theory of gravity?
Lʼhypothèse que lʼunivers est spatialement homogène à grande échelle est au fondement de presque toute la cosmologie. Cette idée est basée sur le principe de Copernic, qui érige que nous ne tenons pas une place particulière dans lʼunivers. De façon surprenante, cette hypothèse philosophique nʼa pas encore été montrée indépendamment du paradigme standard de la cosmologie. Ce problème a été mis en exergue par des modèles cosmologiques qui peuvent expliquer lʼapparente accélération en utilisant lʼinhomogénéité spatiale plutôt que lʼénergie noire. Ces modèles remplacent lʼajustement fin associé à la constante cosmologique par un ajustement spatial, et ainsi violent le principe de Copernic. Même sʼil semble peu probable que ces modèles donnent une solution réaliste aux problèmes de lʼénergie noire, ils révèlent cependant notre ignorance de lʼinhomogénéité radiale de lʼunivers. Ainsi reste un probleme épineux : comment tester de façon robuste le principe de Copernic indépendamment de lʼexistence de lʼénergie noire ou de toute théorie de la gravité.
Mot clés : Énergie noire, Inhomogénéité spatiale, Théorie de la gravité
Chris Clarkson 1, 2
@article{CRPHYS_2012__13_6-7_682_0, author = {Chris Clarkson}, title = {Establishing homogeneity of the universe in the shadow of dark energy}, journal = {Comptes Rendus. Physique}, pages = {682--718}, publisher = {Elsevier}, volume = {13}, number = {6-7}, year = {2012}, doi = {10.1016/j.crhy.2012.04.005}, language = {en}, }
Chris Clarkson. Establishing homogeneity of the universe in the shadow of dark energy. Comptes Rendus. Physique, Volume 13 (2012) no. 6-7, pp. 682-718. doi : 10.1016/j.crhy.2012.04.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.04.005/
[1] Dark energy, anthropic selection effects, entropy and life | arXiv
[2] Redshift and structure formation in a spatially flat inhomogeneous universe, Phys. Rev. D, Volume 45 (1992), p. 3512
[3] Cosmological observations in a local void, Astrophys. J., Volume 453 (1995), p. 17 | arXiv
[4] Anisotropic observations in universes with nonlinear inhomogeneity, Astrophys. J., Volume 477 (1997), p. 47 | arXiv
[5] Shrinking 2. The distortion of the area distance redshift relation in inhomogeneous isotropic universes, Class. Quant. Grav., Volume 15 (1998), p. 2363 | arXiv
[6] A local Hubble bubble from SNe Ia?, Astrophys. J., Volume 503 (1998), p. 483 | arXiv
[7] Large scale inhomogeneity versus source evolution: can we distinguish them observationally?, Mon. Not. Roy. Astron. Soc., Volume 292 (1997), p. 817 | arXiv
[8] Cosmic acceleration: inhomogeneity versus vacuum energy, Mod. Phys. Lett. A, Volume 14 (1999), p. 1539 | arXiv
[9] Do we really see a cosmological constant in the supernovae data?, Astron. Astrophys., Volume 353 (2000), p. 63 | arXiv
[10] Multicolor observations, inhomogeneity and evolution, Astron. Astrophys., Volume 372 (2001), p. 357 | arXiv
[11] A local void and the accelerating universe, Mon. Not. Roy. Astron. Soc., Volume 326 (2001), p. 287 | arXiv
[12] Analyses of type Ia supernova data in cosmological models with a local void, Prog. Theor. Phys., Volume 106 (2001), p. 929 | arXiv
[13] Is dark energy the only solution to the apparent acceleration of the present universe?, Prog. Theor. Phys., Volume 108 (2002), p. 809 | arXiv
[14] Cosmic microwave background, accelerating Universe and inhomogeneous cosmology, JCAP, Volume 0510 (2005), p. 012 | arXiv
[15] Late-time inhomogeneity and acceleration without dark energy, JCAP, Volume 0605 (2006), p. 001 | arXiv
[16] An inhomogeneous alternative to dark energy?, Phys. Rev. D, Volume 73 (2006), p. 083519 | arXiv
[17] Supernovae Ia observations in the Lemaitre–Tolman model, PMC Phys. A, Volume 2 (2008), p. 1 | arXiv
[18] Mimicking dark energy with Lemaitre–Tolman–Bondi models: Weak central singularities and critical points, Phys. Rev. D, Volume 74 (2006), p. 023506 | arXiv
[19] Inhomogeneous spacetimes as a dark energy model, Class. Quant. Grav., Volume 23 (2006), p. 4811 | arXiv
[20] Nonlinear structure formation and apparent acceleration: an investigation, JCAP, Volume 0712 (2007), p. 017 | arXiv
[21] CMB anisotropies seen by an off-center observer in a spherically symmetric inhomogeneous universe, Phys. Rev. D, Volume 74 (2006), p. 103520 | arXiv
[22] Mapping luminosity–redshift relationship to LTB cosmology, Phys. Rev. D, Volume 74 (2006), p. 103507 | arXiv
[23] The effect of inhomogeneous expansion on the supernova observations, JCAP, Volume 0702 (2007), p. 019 | arXiv
[24] Accelerated-like expansion: inhomogeneities versus dark energy, 2006 | arXiv
[25] The supernova Hubble diagram for off-center observers in a spherically symmetric inhomogeneous universe, Phys. Rev. D, Volume 75 (2007), p. 023506 | arXiv
[26] Redshift spherical shell energy in isotropic universes, Phys. Rev. D, Volume 76 (2007), p. 103525 | arXiv
[27] The accelerated expansion of the Universe challenged by an effect of the inhomogeneities. A review | arXiv
[28] Is there evidence for a Hubble bubble? The nature of type Ia supernova colors and dust in external galaxies, Astrophys. J., Volume 664 (2007), p. L13 | arXiv
[29] Obtaining the spacetime metric from cosmological observations, Class. Quant. Grav., Volume 24 (2007), p. 4107 | arXiv
[30] Dark energy or apparent acceleration due to a relativistic cosmological model more complex than FLRW?, Phys. Rev. D, Volume 78 (2008), p. 123531 (Erratum) | arXiv
[31] The metric of the cosmos II: Accuracy, stability, and consistency, Phys. Rev. D, Volume 78 (2008), p. 044005 | arXiv
[32] Lemaitre–Tolman–Bondi model and accelerating expansion, Gen. Rel. Grav., Volume 40 (2008), p. 451 | arXiv
[33] Is the evidence for dark energy secure?, Gen. Rel. Grav., Volume 40 (2008), p. 269 | arXiv
[34] A test of the Copernican principle, Phys. Rev. Lett., Volume 100 (2008), p. 191302 | arXiv
[35] Dark energy as a mirage, Gen. Rel. Grav., Volume 42 (2010), p. 567 | arXiv
[36] Local void vs dark energy: Confrontation with WMAP and type Ia supernovae, JCAP, Volume 0909 (2009), p. 025 | arXiv
[37] A general test of the Copernican principle, Phys. Rev. Lett., Volume 101 (2008), p. 011301 | arXiv
[38] Time drift of cosmological redshifts as a test of the Copernican principle, Phys. Rev. Lett., Volume 100 (2008), p. 191303 | arXiv
[39] Confronting Lemaitre–Tolman–Bondi models with observational cosmology, JCAP, Volume 0804 (2008), p. 003 | arXiv
[40] Scalar perturbations on Lemaitre–Tolman–Bondi spacetimes, Phys. Rev. D, Volume 78 (2008), p. 043504 | arXiv
[41] Solving inverse problem with inhomogeneous universe, Prog. Theor. Phys., Volume 120 (2008), p. 937 | arXiv
[42] Looking the void in the eyes – the kSZ effect in LTB models, JCAP, Volume 0809 (2008), p. 016 | arXiv
[43] Living in a void: Testing the Copernican principle with distant supernovae, Phys. Rev. Lett., Volume 101 (2008), p. 131302 | arXiv
[44] Testing the Copernican principle via cosmological observations, JCAP, Volume 0902 (2009), p. 020 | arXiv
[45] Solving Einstein field equations in observational coordinates with cosmological data functions: Spherically symmetric universes with cosmological constant, Phys. Rev. D, Volume 78 (2008), p. 063513 | arXiv
[46] Constraints on large scale inhomogeneities from WMAP-5 and SDSS: confrontation with recent observations, Mon. Not. Roy. Astron. Soc., Volume 401 (2010), p. 547 | arXiv
[47] Can the Copernican principle be tested by cosmic neutrino background?, JCAP, Volume 0812 (2008), p. 002 | arXiv
[48] Can we avoid dark energy?, Phys. Rev. Lett., Volume 101 (2008), p. 251303 | arXiv
[49] The radial BAO scale and cosmic shear, a new observable for inhomogeneous cosmologies, JCAP, Volume 0909 (2009), p. 028 | arXiv
[50] What the small angle CMB really tells us about the curvature of the universe, JCAP, Volume 0907 (2009), p. 029 | arXiv
[51] Probing violation of the Copernican principle via the integrated Sachs–Wolfe effect, Phys. Rev. D, Volume 79 (2009), p. 103505 | arXiv
[52] Imitating accelerated expansion of the Universe by matter inhomogeneities: Corrections of some misunderstandings, Gen. Rel. Grav., Volume 42 (2010), p. 2453 | arXiv
[53] Perturbation theory in Lemaitre–Tolman–Bondi cosmology, JCAP, Volume 0906 (2009), p. 025 | arXiv
[54] Obtaining the time evolution for spherically symmetric Lemaitre–Tolman–Bondi models given data on our past light cone, Phys. Rev. D, Volume 80 (2009), p. 123517 (Erratum) | arXiv
[55] A (giant) void is not mandatory to explain away dark energy with a Lemaitre–Tolman model, Astron. Astrophys., Volume 518 (2010), p. A21 | arXiv
[56] On astrophysical explanations due to cosmological inhomogeneities for the observational acceleration | arXiv
[57] SNe observations in a meatball universe with a local void, Phys. Rev. D, Volume 80 (2009), p. 127301 | arXiv
[58] The motion of galaxy clusters in inhomogeneous cosmologies, Class. Quant. Grav., Volume 27 (2010), p. 065002 | arXiv
[59] et al. First-year Sloan Digital Sky Survey-II (SDSS-II) supernova results: Constraints on non-standard cosmological models, Astrophys. J., Volume 703 (2009), p. 1374 | arXiv
[60] Rendering dark energy void, Mon. Not. Roy. Astron. Soc., Volume 405 (2010), p. 2231 | arXiv
[61] Supernovae as seen by off-center observers in a local void, JCAP, Volume 1005 (2010), p. 006 | arXiv
[62] Distinguishing between void models and dark energy with cosmic parallax and redshift drift, Phys. Rev. D, Volume 81 (2010), p. 043522 | arXiv
[63] Modelling inhomogeneity in the universe, PoS ISFTG (2009), p. 005 | arXiv
[64] Void or dark energy? | arXiv
[65] Testing (in)homogeneity with redshift spherical shell mass , JCAP, Volume 1001 (2010), p. 004 | arXiv
[66] Light-cone observations and cosmological models: implications for inhomogeneous models mimicking dark energy | arXiv
[67] Non singular spherically symmetric matter inhomogeneities cannot locally mimick the cosmological constant for a central observer, JCAP, Volume 1005 (2010), p. 020 | arXiv
[68] Mimicking the cosmological constant for more than one observable with large scale inhomogeneities, Phys. Rev. D, Volume 82 (2010), p. 123528 | arXiv
[69] A new approach for doing theoretical and numeric work with Lemaitre–Tolman–Bondi dust models | arXiv
[70] Radial asymptotics of Lemaitre–Tolman–Bondi dust models, Gen. Rel. Grav., Volume 42 (2010), p. 2813 | arXiv
[71] Cosmic age test in inhomogeneous cosmological models mimicking ΛCDM on the light-cone, Phys. Rev. D, Volume 82 (2010), p. 023516 | arXiv
[72] How close can an inhomogeneous universe mimic the concordance model?, JCAP, Volume 1006 (2010), p. 017 | arXiv
[73] Gravitational lensing effects in the LTB model | arXiv
[74] Analytic formulae for CMB anisotropy in LTB cosmology | arXiv
[75] Do primordial lithium abundances imply thereʼs no dark energy?, Gen. Rel. Grav., Volume 44 (2012), p. 567 | arXiv
[76] CMB observations in LTB universes: Part I: Matching peak positions in the CMB spectrum, JCAP, Volume 1007 (2010), p. 012 | arXiv
[77] Evolution of radial profiles in regular Lemaitre–Tolman–Bondi dust models, Class. Quant. Grav., Volume 27 (2010), p. 175001 | arXiv
[78] Inhomogeneity and the foundations of concordance cosmology, Class. Quant. Grav., Volume 27 (2010), p. 124008 | arXiv
[79] Testing the void against cosmological data: fitting CMB, BAO, SN and H0, JCAP, Volume 1011 (2010), p. 030 | arXiv
[80] Observational cosmology using characteristic numerical relativity, Phys. Rev. D, Volume 82 (2010), p. 084001 | arXiv
[81] The cosmic microwave background in an inhomogeneous universe – why void models of dark energy are only weakly constrained by the CMB, JCAP, Volume 1102 (2011), p. 013 | arXiv
[82] Precision cosmology defeats void models for acceleration, Phys. Rev. D, Volume 83 (2011), p. 103515 | arXiv
[83] CMB observations in LTB universes: Part II – The kSZ effect in an LTB universe, JCAP, Volume 1010 (2010), p. 011 | arXiv
[84] Spatial and temporal tuning in void models for acceleration, Phys. Rev. D, Volume 82 (2010), p. 103532 | arXiv
[85] Using time drift of cosmological redshifts to find the mass-energy density of the universe, Phys. Rev. D, Volume 82 (2010), p. 123513 | arXiv
[86] Confirmation of the Copernican principle at Gpc radial scale and above from the kinetic Sunyaev Zelʼdovich effect power spectrum, Phys. Rev. Lett., Volume 107 (2011), p. 041301 | arXiv
[87] Observational constraints on the LLTB model, JCAP, Volume 1012 (2010), p. 021 | arXiv
[88] Redshift drift in LTB void universes, Phys. Rev. D, Volume 83 (2011), p. 043527 | arXiv
[89] A note on the inverse problem with LTB universes, Prog. Theor. Phys., Volume 124 (2010), p. 645 | arXiv
[90] Large scale structure simulations of inhomogeneous LTB void models, Phys. Rev. D, Volume 82 (2010), p. 123530 | arXiv
[91] Finding a spherically symmetric cosmology from observations in observational coordinates – advantages and challenges, JCAP, Volume 1107 (2011), p. 029 | arXiv
[92] Inhomogeneities in dusty universe – a possible alternative to dark energy?, JCAP, Volume 1103 (2011), p. 014 | arXiv
[93] Odd parity perturbations of the self-similar LTB spacetime, Class. Quant. Grav., Volume 28 (2011), p. 105020 | arXiv
[94] Reconciling the local void with the CMB, Phys. Rev. D, Volume 83 (2011), p. 063506 | arXiv
[95] The gravitational lensing effect on the CMB polarisation anisotropy in the lambda-LTB model, Prog. Theor. Phys., Volume 125 (2011), p. 815 | arXiv
[96] Observational constraints on inhomogeneous cosmological models without dark energy, Class. Quant. Grav., Volume 28 (2011), p. 164004 | arXiv
[97] Back-reaction and effective acceleration in generic LTB dust models, Class. Quant. Grav., Volume 28 (2011), p. 235002 | arXiv
[98] The metric of the cosmos from luminosity and age data, JCAP, Volume 1109 (2011), p. 011 | arXiv
[99] Inhomogeneity effects in cosmology | arXiv
[100] et al. A 3% solution: Determination of the Hubble constant with the Hubble space telescope and wide field camera 3, Astrophys. J., Volume 730 (2011), p. 119 (Erratum) | arXiv
[101] Corrections to the apparent value of the cosmological constant due to local inhomogeneities, JCAP, Volume 1110 (2011), p. 016 | arXiv
[102] Linear kinetic Sunyaev–Zelʼdovich effect and void models for acceleration, Class. Quant. Grav., Volume 28 (2011), p. 164005 | arXiv
[103] Do recent accurate measurements of really rule out void models as alternatives to dark energy? | arXiv
[104] A parametrization of the growth index of matter perturbations in various Dark Energy models and observational prospects using a Euclid-like survey, JCAP, Volume 1110 (2011), p. 010 | arXiv
[105] Exact spherically-symmetric inhomogeneous model with n perfect fluids, JCAP, Volume 1201 (2012), p. 025 | arXiv
[106] Some clarifications about spherically symmetric models of the universe used to deal with the dark energy problem | arXiv
[107] The kSZ effect as a test of general radial inhomogeneity in LTB cosmology, Phys. Rev. D, Volume 85 (2012), p. 024002 | arXiv
[108] Can decaying modes save void models for acceleration?, Phys. Rev. D, Volume 84 (2011), p. 123508 | arXiv
[109] Constraints on Lemaître–Tolman–Bondi models from observational Hubble parameter data | arXiv
[110] Well-posedness of Einsteinʼs equation with redshift data, J. Math. Phys., Volume 50 (2009), p. 113515 | arXiv
[111] Direct measurement of the positive acceleration of the universe and testing inhomogeneous models under gravitational wave cosmology | arXiv
[112] Tension in the void: Cosmic rulers strain inhomogeneous cosmologies | arXiv
[113] On the topological implications of inhomogeneity | arXiv
[114] Do we live in the center of the world?, Phys. Lett. B, Volume 345 (1995), p. 203 | arXiv
[115] A theory of a spot, JCAP, Volume 1101 (2011), p. 019 | arXiv
[116] Dark energy, gravitation and the Copernican principle | arXiv
[117] Does the growth of structure affect our dynamical models of the universe? The averaging, backreaction and fitting problems in cosmology, Rep. Prog. Phys., Volume 74 (2011), p. 112901 | arXiv
[118] Backreaction in late-time cosmology | arXiv
[119] http://en.wikipedia.org/wiki/Wisdom_of_the_crowd
[120] Issues in the philosophy of cosmology | arXiv
[121] Testing the Copernican and cosmological principles in the local universe with galaxy surveys, JCAP, Volume 1006 (2010), p. 021 | arXiv
[122] Phys. Rep., 124 (1985), p. 315
[123] Solving the observer metric, Phys. Rev. D, Volume 79 (2009), p. 043501 | arXiv
[124] Observational homogeneity of the universe, Mon. Not. Roy. Astron. Soc., Volume 218 (1986), pp. 605-614
[125] R. Maartens, PhD thesis, University of Cape Town, 1980.
[126] Class. Quant. Grav., 11 (1994), p. 2693
[127] Large-scale inhomogeneity of the universe – spherically symmetric models, Astron. Astrophys., Volume 59 (1977), pp. 53-58
[128] What is a shell crossing singularity?, J. Austral. Math. Soc. B, Volume 41 (1999), p. 167
[129] et al. New Hubble space telescope discoveries of type Ia supernovae at : Narrowing constraints on the early behavior of dark energy, Astrophys. J., Volume 659 (2007), p. 98 | arXiv
[130] Improved cosmological constraints from new, old and combined supernova datasets, Astrophys. J., Volume 686 (2008), p. 749 | arXiv
[131] Cosmic microwave background anisotropies, Ann. Rev. Astron. Astrophys., Volume 40 (2002), p. 171 | arXiv
[132] Observational constraints on dark energy and cosmic curvature, Phys. Rev. D, Volume 76 (2007), p. 103533 | arXiv
[133] Model-independent cosmological constraints from the CMB, JCAP, Volume 1008 (2010), p. 023 | arXiv
[134] Lecture notes on CMB theory: From nucleosynthesis to recombination | arXiv
[135] Geocentrism reexamined, Phys. Rev. D, Volume 52 (1995), p. 1821 | arXiv
[136] The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies, Comments Astrophys. Space Phys., Volume 4 (1972), p. 173
[137] The velocity of clusters of galaxies relative to the microwave background – The possibility of its measurement, Mon. Not. Roy. Astron. Soc., Volume 190 (1980), pp. 413-420
[138] CMB spectral distortions from the scattering of temperature anisotropies | arXiv
[139] A bitter pill: The primordial lithium problem worsens, JCAP, Volume 0811 (2008), p. 012 | arXiv
[140] A new approach to systematic uncertainties and self-consistency in helium abundance determinations, JCAP, Volume 1005 (2010), p. 003 | arXiv
[141] Primordial nucleosynthesis in the precision cosmology era, Ann. Rev. Nucl. Part. Sci., Volume 57 (2007), p. 463 | arXiv
[142] Deuterium abundance in the most metal-poor damped Lyman alpha system: Converging on omega-baryons, Mon. Not. Roy. Astron. Soc., Volume 391 (2008), p. 1499 | arXiv
[143] Primordial nucleosynthesis: from precision cosmology to fundamental physics, Phys. Rep., Volume 472 (2009), p. 1 | arXiv
[144] Baryonic features in the matter transfer function, Astrophys. J., Volume 496 (1998), p. 605 | arXiv
[145] Covariant perturbations of Schwarzschild black holes, Class. Quant. Grav., Volume 20 (2003), p. 3855 | arXiv
[146] A covariant approach for perturbations of rotationally symmetric spacetimes, Phys. Rev. D, Volume 76 (2007), p. 104034 | arXiv
[147] Phys. Rev. D, 19 (1979), p. 2268 (Addendum)
[148] Gauge-invariant and coordinate-independent perturbations of stellar collapse. I: The interior, Phys. Rev. D, Volume 61 (2000), p. 084024 | arXiv
[149] Perturbations in a spherically symmetric inhomogeneous cosmological model, Phys. Rev. D, Volume 56 (1997), p. 3341
[150] Phys. Rep., 475 (2009), p. 1 | arXiv
[151] Generalized LTB model with inhomogeneous isotropic dark energy: Observational constraints, Phys. Rev. D, Volume 84 (2011), p. 023514 | arXiv
[152] Observational constraints on the averaged universe, Phys. Rev. D, Volume 85 (2012), p. 043506 | arXiv
[153] Bias on w from large-scale structure | arXiv
[154] Inhomogeneous Cosmological Models, Cambridge University Press, Cambridge, 1997 (317 pp) (ISBN: 0 521 481805)
[155] J. Math. Phys., 9 (1968), p. 1344
[156] Commun. Math. Phys., 23 (1971), p. 1
[157] Ann. Phys., 150 (1983), p. 487
[158] Proving almost homogeneity of the universe: An almost Ehlers–Geren–Sachs theorem, Astrophys. J., Volume 443 (1995), p. 1
[159] Phys. Rev. D, 46 (1999), p. 578
[160] Does the isotropy of the CMB imply a homogeneous universe? Some generalized EGS theorems, Class. Quant. Grav., Volume 16 (1999), p. 3781 | arXiv
[161] Magnetic fields and the cosmic microwave background, Class. Quant. Grav., Volume 18 (2001), p. 1305 | arXiv
[162] The cosmic microwave background and scalar tensor theories of gravity, Phys. Rev. D, Volume 64 (2001), p. 063510 | arXiv
[163] Covariant cosmic microwave background anisotropies. 2. Nonlinear dynamics, Phys. Rev. D, Volume 59 (1999), p. 083506 | arXiv
[164] Supernovae as seen by off-center observers in a local void, JCAP, Volume 1005 (2010), p. 006 | arXiv
[165] A measurement of large-scale peculiar velocities of clusters of galaxies: technical details, Astrophys. J., Volume 691 (2009), p. 1479 | arXiv
[166] Measuring bulk motion of X-ray clusters via the kinematic Sunyaev–Zeldovich effect: summarizing the ‘dark flow’ evidence and its implications | arXiv
[167] Inhomogeneous cosmologies, the Copernican principle and the cosmic microwave background: More on the EGS theorem, Gen. Rel. Grav., Volume 35 (2003), p. 969 | arXiv
[168] The isotropic blackbody CMB as evidence for a homogeneous universe | arXiv
[169] On spacetime models with an isotropic Hubble law, Class. Quant. Grav., Volume 16 (1999), p. 2559
[170] Observations in cosmology, Astrophys. J., Volume 143 (1966), p. 379
[171] A class of homogeneous cosmological models, Commun. Math. Phys., Volume 12 (1969), p. 108
[172] C.A. Clarkson, On the observational characteristics of inhomogeneous cosmologies: Undermining the cosmological principle; or have cosmologists put all their EGS in one basket?, PhD thesis, University of Glasgow, 1999, . | arXiv
[173] Is backreaction really small within concordance cosmology?, Class. Quant. Grav., Volume 28 (2011), p. 164010 | arXiv
[174] Nature, 281 (1979), p. 358
[175] Testing homogeneity with the fossil record of galaxies, JCAP, Volume 1109 (2011), p. 035 | arXiv
[176] Limits on anisotropy and inhomogeneity from the cosmic background radiation, Phys. Rev. D, Volume 51 (1995), p. 1525 | arXiv
[177] Anisotropy and inhomogeneity of the universe from Delta, Astron. Astrophys., Volume 309 (1996), p. L7 | arXiv
[178] Improved limits on anisotropy and inhomogeneity from the cosmic background radiation, Phys. Rev. D, Volume 51 (1995), p. 5942
[179] The limits on cosmological anisotropies and inhomogeneities from COBE data, Astrophys. J., Volume 476 (1997), p. 435 | arXiv
[180] Anisotropic universes with isotropic cosmic microwave background radiation: Letter to the editor, Class. Quant. Grav., Volume 18 (2001), p. 5583 | arXiv
[181] On the relation between the isotropy of the CMB and the geometry of the universe, Phys. Rev. D, Volume 79 (2009), p. 123522 | arXiv
[182] Can the acceleration of our universe be explained by the effects of inhomogeneities?, Class. Quant. Grav., Volume 23 (2006), p. 235 | arXiv
[183] LTB solutions in Newtonian gauge: From strong to weak fields, JCAP, Volume 0810 (2008), p. 028 | arXiv
[184] Average observational quantities in the timespace cosmology, Phys. Rev. D, Volume 80 (2009), p. 123512 | arXiv
[185] Consistency tests for the cosmological constant, Phys. Rev. Lett., Volume 101 (2008), p. 181301 | arXiv
[186] Two new diagnostics of dark energy, Phys. Rev. D, Volume 78 (2008), p. 103502 | arXiv
[187] Model independent tests of the standard cosmological model, Phys. Rev. D, Volume 81 (2010), p. 083537 | arXiv
[188] et al. The WiggleZ dark energy survey: measuring the cosmic expansion history using the Alcock–Paczynski test and distant supernovae | arXiv
[189] On the determination of dark energy, AIP Conf. Proc., Volume 1241 (2010), p. 784 | arXiv
[190] The 42m European ELT: Status, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7012, SPIE, 2008
[191] The dipole of the luminosity distance: a direct measure of , Phys. Rev. Lett., Volume 96 (2006), p. 191302 | arXiv
[192] Dynamical dark energy or simply cosmic curvature?, JCAP, Volume 0708 (2007), p. 011 | arXiv
[193] A model independent measure of the large scale curvature of the universe | arXiv
[194] Consistency among distance measurements: transparency, BAO scale and accelerated expansion, JCAP, Volume 0906 (2009), p. 012 | arXiv
[195] Prospects for constraining cosmology with the extragalactic cosmic microwave background temperature, Phys. Rev. D, Volume 64 (2001), p. 123002 | arXiv
[196] Constraints on the CMB temperature redshift dependence from SZ and distance measurements | arXiv
[197] Probing the universe on gigaparsec scales with remote cosmic microwave background quadrupole measurements, Phys. Rev. D, Volume 73 (2006), p. 123517 | arXiv
[198] Is the universe homogeneous?, Philos. Trans. Roy. Soc. Lond. A, Volume 369 (2011), p. 5115 | arXiv
[199] Gauge-invariant treatment of the integrated Sachs–Wolfe effect on general spherically symmetric spacetimes, Phys. Rev. D, Volume 81 (2010), p. 063509 | arXiv
[200] TASI lectures on inflation | arXiv
[201] Constraints on primordial isocurvature perturbations and spatial curvature by Bayesian model selection, Phys. Rev. D, Volume 80 (2009), p. 123516 | arXiv
[202] Undermining the cosmological principle: almost isotropic observations in inhomogeneous cosmologies, Class. Quant. Grav., Volume 17 (2000), p. 5047 | arXiv
[203] Perceiving the equation of state of dark energy while living in a cold spot, JCAP, Volume 1201 (2012), p. 047 | arXiv
[204] arXiv
|[205] Cosmological models, NATO Adv. Stud. Inst. Ser. C Math. Phys. Sci., Volume 541 (1999), p. 1 | arXiv
[206] Relativistic cosmology and large-scale structure, Phys. Rep., Volume 465 (2008), p. 61 | arXiv
Cited by Sources:
Comments - Policy