[Comportement à la polarisation optique de nanoparticules de symétrie dʼordre 3 : Modèle et résultats expérimentaux]
In this study, we demonstrate that any complex nanostructure that belongs to
Dans cet article, nous démontrons que toutes les nanostructures, même de géométrie complexe, qui appartiennent au groupe de symétrie ponctuel
Mots-clés : Nanoparticules dʼor, Polarisation optique, Groupe ponctuel de symétrie
Hong Shen 1 ; Jérémy Rouxel 1, 2 ; Nicolas Guillot 3 ; Marc Lamy de la Chapelle 3 ; Timothée Toury 1
@article{CRPHYS_2012__13_8_830_0, author = {Hong Shen and J\'er\'emy Rouxel and Nicolas Guillot and Marc Lamy de la Chapelle and Timoth\'ee Toury}, title = {Light polarization properties of three fold symmetry gold nanoparticles: {Model} and experiments}, journal = {Comptes Rendus. Physique}, pages = {830--836}, publisher = {Elsevier}, volume = {13}, number = {8}, year = {2012}, doi = {10.1016/j.crhy.2012.09.004}, language = {en}, }
TY - JOUR AU - Hong Shen AU - Jérémy Rouxel AU - Nicolas Guillot AU - Marc Lamy de la Chapelle AU - Timothée Toury TI - Light polarization properties of three fold symmetry gold nanoparticles: Model and experiments JO - Comptes Rendus. Physique PY - 2012 SP - 830 EP - 836 VL - 13 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2012.09.004 LA - en ID - CRPHYS_2012__13_8_830_0 ER -
%0 Journal Article %A Hong Shen %A Jérémy Rouxel %A Nicolas Guillot %A Marc Lamy de la Chapelle %A Timothée Toury %T Light polarization properties of three fold symmetry gold nanoparticles: Model and experiments %J Comptes Rendus. Physique %D 2012 %P 830-836 %V 13 %N 8 %I Elsevier %R 10.1016/j.crhy.2012.09.004 %G en %F CRPHYS_2012__13_8_830_0
Hong Shen; Jérémy Rouxel; Nicolas Guillot; Marc Lamy de la Chapelle; Timothée Toury. Light polarization properties of three fold symmetry gold nanoparticles: Model and experiments. Comptes Rendus. Physique, Nanophotonics and near field/Nanophotonique et champ proche, Volume 13 (2012) no. 8, pp. 830-836. doi : 10.1016/j.crhy.2012.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.09.004/
[1] Exploitation of localized surface plasmon resonance, Adv. Mater., Volume 16 (2004) no. 19, pp. 1685-1706
[2] Metal nanoparticles as labels for heterogeneous, chip-based DNA detection, Nanotechnology, Volume 14 (2003) no. 12, p. R63
[3] Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science, Volume 275 (1997) no. 5303, pp. 1102-1106 | DOI
[4] A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Chem. Soc., Volume 124 (2002) no. 35, pp. 10596-10604 (pMID: 12197762) | DOI
[5] Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E, Volume 62 (2000), pp. 4318-4324 | DOI
[6] Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett., Volume 78 (1997) no. 9, pp. 1667-1670 | DOI
[7] Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures, Phys. Rev. B, Volume 81 (2010), p. 115406 | DOI
[8] Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods, Appl. Phys. Lett., Volume 96 (2010) no. 21, p. 213111 | DOI
[9] Surface enhanced infrared spectroscopy using gold nanoantennas, Phys. Status Solidi (b), Volume 247 (2010) no. 8, pp. 2071-2074 | DOI
[10] Metal-enhanced fluorescence: Potential applications in HTS, Comb. Chem. High Throughput Screen., Volume 6 (2003), pp. 109-117
[11] Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett., Volume 83 (1999), pp. 4357-4360 | DOI
[12] A hybridization model for the plasmon response of complex nanostructures, Science, Volume 302 (2003) no. 5644, pp. 419-422 | DOI
[13] Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates, Nano Lett., Volume 5 (2005) no. 8, pp. 1569-1574 | DOI
[14] Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures, Phys. Rev. B, Volume 81 (2010), p. 115406 | DOI
[15] Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays, Phys. Rev. B, Volume 72 (2005) no. 3, p. 033407 | DOI
[16] , Surface Plasmons on Smooth and Rough Surfaces and on Gratings, vol. 38, Academic Press, New York, 1984
[17] The description of the physical properties of condensed matter using irreducible tensors, Adv. Phys., Volume 27 (1978), p. 609
[18] Quantum Theory of Angular Momentum, World Scientific Pub. Co. Inc., 1988
[19] Molecular engineering implication of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials, J. Chem. Phys., Volume 98 (1993), p. 6583
[20] Elementary Theory of Angular Momentum, Dover, 1957
[21] Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media, J. Opt. Soc. Am. B, Volume 15 (1998), p. 257
[22] Surface-plasmon resonances in single metallic nanoparticles, Phys. Rev. Lett., Volume 80 (1998), pp. 4249-4252 | DOI
[23] Plasmonics: Fundamentals and Applications, Springer-Verlag, New York, 2007
- High-Sensitivity, High-Resolution Miniaturized Spectrometers for Ultraviolet to Near-Infrared Using Guided-Mode Resonance Filters, Molecules, Volume 29 (2024) no. 23, p. 5580 | DOI:10.3390/molecules29235580
- High-sensitivity miniaturized spectrometers using photonic crystal slab filters, Optics Letters, Volume 49 (2024) no. 19, p. 5483 | DOI:10.1364/ol.536720
- Shifting the plasmonic resonance to infrared region for AlP by inducing high S concentration: Indirect to direct band gap, Physica B: Condensed Matter, Volume 654 (2023), p. 414718 | DOI:10.1016/j.physb.2023.414718
- Enhanced second harmonic generation of gold nanostars: optimizing multipolar radiation to improve nonlinear properties, Optics Express, Volume 27 (2019) no. 4, p. 5620 | DOI:10.1364/oe.27.005620
- Polarization- and Angular-Resolved Optical Response of Molecules on Anisotropic Plasmonic Nanostructures, Nanomaterials, Volume 8 (2018) no. 6, p. 418 | DOI:10.3390/nano8060418
- Near-Field Response on the Far-Field Wavelength-Scanned Surface-Enhanced Raman Spectroscopic Study of Methylene Blue Adsorbed on Gold Nanocolloidal Particles, The Journal of Physical Chemistry C, Volume 122 (2018) no. 20, p. 10981 | DOI:10.1021/acs.jpcc.8b00315
- Short note on the dipole approximation for electric field enhancement by small metallic nanoparticles, Journal of Optics, Volume 17 (2015) no. 11, p. 114003 | DOI:10.1088/2040-8978/17/11/114003
- Optical Nano Antennas: State of the Art, Scope and Challenges as a Biosensor Along with Human Exposure to Nano-Toxicology, Sensors, Volume 15 (2015) no. 4, p. 8787 | DOI:10.3390/s150408787
Cité par 8 documents. Sources : Crossref
Commentaires - Politique