[Croissance de monocristaux de diamant de grande dimension par dépôt chimique en phase vapeur assisté par plasma : Réalisations récentes et défis à venir]
Le diamant est un matériau aux propriétés hors du commun permettant dʼenvisager un grand nombre dʼapplications, parmi lesquelles des fenêtres optiques, des dispositifs dʼélectronique de puissance ou dʼinformation quantique, des détecteurs de radiation ou de substances biologiques. Les énormes progrès de la technique de synthèse par dépôt chimique en phase vapeur assisté par plasma micro-onde ont permis la réalisation de monocristaux de qualité optique jusquʼà plusieurs millimètres dʼépaisseur et présentant une bonne transparence. Néanmoins, les exigences en termes de dimensions, de pureté et qualité cristalline sont de plus en plus élevées pour les applications visées, et la croissance se heurte alors à un certain nombre de verrous technologiques ou scientifiques. Dans ce papier, après une rapide description des principes de la technique de croissance, les problèmes de lʼaugmentation des dimensions verticales et latérales des cristaux, du contrôle des défauts ponctuels et étendus ainsi que de la modulation de la conductivité par lʼajout dʼimpuretés dopantes seront abordés et des solutions possibles seront alors proposées.
Diamond is a material with outstanding properties making it particularly suited for high added-value applications such as optical windows, power electronics, radiation detection, quantum information, bio-sensing and many others. Tremendous progresses in its synthesis by microwave plasma assisted chemical vapour deposition have allowed obtaining single crystal optical-grade material with thicknesses of up to a few millimetres. However the requirements in terms of size, purity and crystalline quality are getting more and more difficult to achieve with respect to the forecasted applications, thus pushing the synthesis method to its scientific and technological limits. In this paper, after a short description of the operating principles of the growth technique, the challenges of increasing crystal dimensions both laterally and vertically, decreasing and controlling point and extended defects as well as modulating crystal conductivity by an efficient doping will be detailed before offering some insights into ways to overcome them.
Mot clés : Diamant, Croissance cristalline, Dépôt chimique en phase vapeur, Plasma micro-onde, Défauts, Dopage
Alexandre Tallaire 1 ; Jocelyn Achard 1 ; François Silva 1 ; Ovidiu Brinza 1 ; Alix Gicquel 1
@article{CRPHYS_2013__14_2-3_169_0, author = {Alexandre Tallaire and Jocelyn Achard and Fran\c{c}ois Silva and Ovidiu Brinza and Alix Gicquel}, title = {Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: {Recent} achievements and remaining challenges}, journal = {Comptes Rendus. Physique}, pages = {169--184}, publisher = {Elsevier}, volume = {14}, number = {2-3}, year = {2013}, doi = {10.1016/j.crhy.2012.10.008}, language = {en}, }
TY - JOUR AU - Alexandre Tallaire AU - Jocelyn Achard AU - François Silva AU - Ovidiu Brinza AU - Alix Gicquel TI - Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges JO - Comptes Rendus. Physique PY - 2013 SP - 169 EP - 184 VL - 14 IS - 2-3 PB - Elsevier DO - 10.1016/j.crhy.2012.10.008 LA - en ID - CRPHYS_2013__14_2-3_169_0 ER -
%0 Journal Article %A Alexandre Tallaire %A Jocelyn Achard %A François Silva %A Ovidiu Brinza %A Alix Gicquel %T Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges %J Comptes Rendus. Physique %D 2013 %P 169-184 %V 14 %N 2-3 %I Elsevier %R 10.1016/j.crhy.2012.10.008 %G en %F CRPHYS_2013__14_2-3_169_0
Alexandre Tallaire; Jocelyn Achard; François Silva; Ovidiu Brinza; Alix Gicquel. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges. Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 169-184. doi : 10.1016/j.crhy.2012.10.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.10.008/
[1] Bulk Crystal Growth in Electronic, Optical and Optoelectronic Materials (P. Capper, ed.), John Wiley and Sons, 2005
[2] Am. Mineral., 88 (2003), p. 1555
[3] Diam. Relat. Mater., 11 (2002), pp. 204-211
[4] J. Phys. Condens. Matter, 21 (2009), p. 364224
[5] Diam. Relat. Mater., 16 (2007), pp. 1486-1489
[6] Diam. Relat. Mater., 14 (2005), pp. 249-254
[7] Diam. Relat. Mater., 14 (2005), pp. 266-271
[8] Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 12523-12525
[9] Phys. Status Solidi, a Appl. Res., 202 (2005), pp. 2066-2072
[10] Phys. Status Solidi, a Appl. Res., 203 (2006), pp. 3324-3357
[11] Gems. Gemol., 40 (2004), p. 2
[12] Gems. Gemol., 39 (2003), pp. 268-283
[13] J. Cryst. Growth, 284 (2005), pp. 396-405
[14] J. Phys. Condens. Matter, 21 (2009), p. 364221
[15] Appl. Phys. Lett., 94 (2009), pp. 092102-092103
[16] Diam. Relat. Mater., 20 (2011), pp. 145-152
[17] Diam. Relat. Mater., 19 (2010), pp. 229-233
[18] Diam. Relat. Mater., 18 (2009), pp. 884-889
[19] Diam. Relat. Mater., 20 (2011), pp. 134-139
[20] Nat. Mater., 8 (2009), pp. 383-387
[21] Opt. Express, 18 (2010), pp. 16765-16770
[22] Diam. Relat. Mater., 18 (2009), pp. 808-815
[23] Diam. Relat. Mater., 17 (2008), pp. 1297-1301
[24] Diam. Relat. Mater., 10 (2001), pp. 673-680
[25] Appl. Phys. Lett., 56 (1990), pp. 2298-2300
[26] Chem. Phys., 398 (2012), pp. 239-247
[27] J. Electrochem. Soc., 147 (2000), pp. 2218-2226
[28] Curr. Appl. Phys., 1 (2001), pp. 479-496
[29] J. Phys. D, Appl. Phys., 43 (2010), p. 153001
[30] J. Phys. Chem. A, Mol. Spectrosc. Kinet. Environ. Gen. Theory, 114 (2010), pp. 10076-10089
[31] J. Cryst. Growth, 271 (2004), pp. 409-419
[32] J. Phys. Condens. Matter, 21 (2009), p. 364202
[33] Diam. Relat. Mater., 24 (2012), pp. 210-214
[34] Diam. Relat. Mater., 20 (2011), pp. 480-484
[35] Diam. Relat. Mater., 17 (2008), pp. 1035-1038
[36] Appl. Phys. Express, 4 (2011)
[37] Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 366 (2008), pp. 295-311
[38] Appl. Phys. Lett., 93 (2008), pp. 031502-031503
[39] Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 342 (1993), pp. 209-224
[40] Diam. Relat. Mater., 7 (1998), pp. 88-95
[41] J. Chem. Phys., 111 (1999), pp. 4291-4299
[42] Diam. Relat. Mater., 3 (1994), pp. 373-381
[43] Diam. Relat. Mater., 13 (2004), pp. 1954-1958
[44] Diam. Relat. Mater., 16 (2007), pp. 685-689
[45] Diam. Relat. Mater., 7 (1998), pp. 348-355
[46] Appl. Phys. Lett., 94 (2009), pp. 224101-224103
[47] Crystal Growth for Beginners, Fundamentals of Nucleation, Growth and Epitaxy, World Scientific, 2004
[48] J. Cryst. Growth, 317 (2011), pp. 60-63
[49] J. Phys. D, Appl. Phys., 40 (2007), pp. 6175-6188
[50] J. Phys. D, Appl. Phys., 35 (2002), pp. 1939-1945
[51] A. Gicquel, F. Silva, X. Duten, K. Hassouni, G. Lombardi, A. Rousseau, French Patent, July 2004, FR2849867.
[52] A. Gicquel, F. Silva, X. Duten, K. Hassouni, G. Lombardi, A. Rousseau, U.S. Patent, February 2010, 7662441 B2.
[53] Diam. Relat. Mater., 18 (2009), pp. 750-758
[54] Diam. Relat. Mater., 16 (2007), pp. 1295-1299
[55] Phys. Status Solidi, a Appl. Res., 208 (2011), pp. 2028-2032
[56] Thin Solid Films, 310 (1997), pp. 39-46
[57] J. Cryst. Growth, 237–239 (2002), pp. 1269-1276
[58] Phys. Status Solidi, a Appl. Res., 208 (2011), pp. 2023-2027
[59] Phys. Status Solidi, a Appl. Res., 203 (2006), pp. 3049-3055
[60] Diam. Relat. Mater., 2 (1993), p. 158
[61] Diam. Relat. Mater., 17 (2008), pp. 1067-1075
[62] Phys. Status Solidi, a Appl. Res., 205 (2008), pp. 2114-2120
[63] Diam. Relat. Mater., 20 (2011), pp. 875-881
[64] Diam. Relat. Mater., 18 (2009), pp. 682-697
[65] Diam. Relat. Mater., 14 (2005), pp. 1743-1746
[66] Diam. Relat. Mater., 4 (1994), pp. 76-82
[67] Thin Solid Films, 308–309 (1997), pp. 178-185
[68] Diam. Relat. Mater., 4 (1995), pp. 1025-1031
[69] Appl. Phys. Express, 3 (2010), p. 051301
[70] Diam. Relat. Mater., 24 (2012), pp. 29-33
[71] Optical Properties of Diamond: A Data Handbook, Springer, 2001
[72] J. Phys. Condens. Matter, 21 (2009), p. 364216
[73] Diam. Relat. Mater., 5 (1996), pp. 1516-1518
[74] Phys. Rev. Lett., 92 (2004), p. 135502
[75] Diam. Relat. Mater., 10 (2001), pp. 399-404
[76] Appl. Phys. Lett., 100 (2012), p. 071902
[77] Phys. Status Solidi, a Appl. Res., 201 (2004), pp. 2473-2485
[78] Diam. Relat. Mater., 15 (2006), pp. 1700-1707
[79] Appl. Phys. Lett., 87 (2005), p. 261909
[80] New J. Phys., 13 (2011), p. 025014
[81] Small, 6 (2010), pp. 2117-2121
[82] Phys. Status Solidi, a Appl. Res., 208 (2011), pp. 2051-2056
[83] Appl. Phys. Lett., 100 (2012), p. 122107
[84] Science, 324 (2009), pp. 1425-1428
[85] Gems. Gemol., 47 (2011), pp. 202-207
[86] Phys. Rev. B, 77 (2008), p. 245205
[87] Phys. Rev. B, 72 (2005), p. 035214
[88] Phys. Status Solidi, a Appl. Res., 208 (2011), pp. 2038-2044
[89] Diam. Relat. Mater., 17 (2008), pp. 60-65
[90] Phys. Status Solidi, a Appl. Res., 204 (2007), pp. 4298-4304
[91] Phys. Rev. B, 65 (2002), p. 205206
[92] Phys. Rev. B, 65 (2002), p. 205205
[93] Phys. Status Solidi, a Appl. Res., 203 (2006), pp. 3070-3075
[94] Diam. Relat. Mater., 17 (2008), pp. 262-269
[95] Phys. Status Solidi, a Appl. Res., 201 (2004), pp. 2419-2424
[96] Diam. Relat. Mater., 18 (2009), pp. 1205-1210
[97] Diam. Relat. Mater., 26 (2012), pp. 45-49
[98] Phys. Status Solidi, a Appl. Res., 203 (2006), pp. 3358-3366
[99] Diam. Relat. Mater., 15 (2006), pp. 548-553
[100] Appl. Phys. Lett., 100 (2012), pp. 192104-192109
[101] Diam. Relat. Mater., 11 (2002), pp. 307-311
[102] Phys. Status Solidi, a Appl. Res., 205 (2008), pp. 2207-2210
[103] Semicond. Semimet., 76 (2003), pp. 183-238
[104] Diam. Relat. Mater., 17 (2008), pp. 1320-1323
[105] Diam. Relat. Mater., 7 (1998), pp. 1390-1393
[106] Diam. Relat. Mater., 18 (2009), pp. 1196-1199
[107] Appl. Phys. Lett., 97 (2010), p. 182101
[108] Diam. Relat. Mater., 20 (2011), pp. 912-916
[109] AIP, 100 (2012), p. 122109
Cité par Sources :
Commentaires - Politique