[Croissance de monocristaux de diamant de grande dimension par dépôt chimique en phase vapeur assisté par plasma : Réalisations récentes et défis à venir]
Le diamant est un matériau aux propriétés hors du commun permettant dʼenvisager un grand nombre dʼapplications, parmi lesquelles des fenêtres optiques, des dispositifs dʼélectronique de puissance ou dʼinformation quantique, des détecteurs de radiation ou de substances biologiques. Les énormes progrès de la technique de synthèse par dépôt chimique en phase vapeur assisté par plasma micro-onde ont permis la réalisation de monocristaux de qualité optique jusquʼà plusieurs millimètres dʼépaisseur et présentant une bonne transparence. Néanmoins, les exigences en termes de dimensions, de pureté et qualité cristalline sont de plus en plus élevées pour les applications visées, et la croissance se heurte alors à un certain nombre de verrous technologiques ou scientifiques. Dans ce papier, après une rapide description des principes de la technique de croissance, les problèmes de lʼaugmentation des dimensions verticales et latérales des cristaux, du contrôle des défauts ponctuels et étendus ainsi que de la modulation de la conductivité par lʼajout dʼimpuretés dopantes seront abordés et des solutions possibles seront alors proposées.
Diamond is a material with outstanding properties making it particularly suited for high added-value applications such as optical windows, power electronics, radiation detection, quantum information, bio-sensing and many others. Tremendous progresses in its synthesis by microwave plasma assisted chemical vapour deposition have allowed obtaining single crystal optical-grade material with thicknesses of up to a few millimetres. However the requirements in terms of size, purity and crystalline quality are getting more and more difficult to achieve with respect to the forecasted applications, thus pushing the synthesis method to its scientific and technological limits. In this paper, after a short description of the operating principles of the growth technique, the challenges of increasing crystal dimensions both laterally and vertically, decreasing and controlling point and extended defects as well as modulating crystal conductivity by an efficient doping will be detailed before offering some insights into ways to overcome them.
Mots-clés : Diamant, Croissance cristalline, Dépôt chimique en phase vapeur, Plasma micro-onde, Défauts, Dopage
Alexandre Tallaire 1 ; Jocelyn Achard 1 ; François Silva 1 ; Ovidiu Brinza 1 ; Alix Gicquel 1
@article{CRPHYS_2013__14_2-3_169_0, author = {Alexandre Tallaire and Jocelyn Achard and Fran\c{c}ois Silva and Ovidiu Brinza and Alix Gicquel}, title = {Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: {Recent} achievements and remaining challenges}, journal = {Comptes Rendus. Physique}, pages = {169--184}, publisher = {Elsevier}, volume = {14}, number = {2-3}, year = {2013}, doi = {10.1016/j.crhy.2012.10.008}, language = {en}, }
TY - JOUR AU - Alexandre Tallaire AU - Jocelyn Achard AU - François Silva AU - Ovidiu Brinza AU - Alix Gicquel TI - Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges JO - Comptes Rendus. Physique PY - 2013 SP - 169 EP - 184 VL - 14 IS - 2-3 PB - Elsevier DO - 10.1016/j.crhy.2012.10.008 LA - en ID - CRPHYS_2013__14_2-3_169_0 ER -
%0 Journal Article %A Alexandre Tallaire %A Jocelyn Achard %A François Silva %A Ovidiu Brinza %A Alix Gicquel %T Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges %J Comptes Rendus. Physique %D 2013 %P 169-184 %V 14 %N 2-3 %I Elsevier %R 10.1016/j.crhy.2012.10.008 %G en %F CRPHYS_2013__14_2-3_169_0
Alexandre Tallaire; Jocelyn Achard; François Silva; Ovidiu Brinza; Alix Gicquel. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges. Comptes Rendus. Physique, Crystal growth / Croissance cristalline, Volume 14 (2013) no. 2-3, pp. 169-184. doi : 10.1016/j.crhy.2012.10.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.10.008/
[1] Bulk Crystal Growth in Electronic, Optical and Optoelectronic Materials (P. Capper, ed.), John Wiley and Sons, 2005
[2] Am. Mineral., 88 (2003), p. 1555
[3] Diam. Relat. Mater., 11 (2002), pp. 204-211
[4] J. Phys. Condens. Matter, 21 (2009), p. 364224
[5] Diam. Relat. Mater., 16 (2007), pp. 1486-1489
[6] Diam. Relat. Mater., 14 (2005), pp. 249-254
[7] Diam. Relat. Mater., 14 (2005), pp. 266-271
[8] Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 12523-12525
[9] Phys. Status Solidi, a Appl. Res., 202 (2005), pp. 2066-2072
[10] Phys. Status Solidi, a Appl. Res., 203 (2006), pp. 3324-3357
[11] Gems. Gemol., 40 (2004), p. 2
[12] Gems. Gemol., 39 (2003), pp. 268-283
[13] J. Cryst. Growth, 284 (2005), pp. 396-405
[14] J. Phys. Condens. Matter, 21 (2009), p. 364221
[15] Appl. Phys. Lett., 94 (2009), pp. 092102-092103
[16] Diam. Relat. Mater., 20 (2011), pp. 145-152
[17] Diam. Relat. Mater., 19 (2010), pp. 229-233
[18] Diam. Relat. Mater., 18 (2009), pp. 884-889
[19] Diam. Relat. Mater., 20 (2011), pp. 134-139
[20] Nat. Mater., 8 (2009), pp. 383-387
[21] Opt. Express, 18 (2010), pp. 16765-16770
[22] Diam. Relat. Mater., 18 (2009), pp. 808-815
[23] Diam. Relat. Mater., 17 (2008), pp. 1297-1301
[24] Diam. Relat. Mater., 10 (2001), pp. 673-680
[25] Appl. Phys. Lett., 56 (1990), pp. 2298-2300
[26] Chem. Phys., 398 (2012), pp. 239-247
[27] J. Electrochem. Soc., 147 (2000), pp. 2218-2226
[28] Curr. Appl. Phys., 1 (2001), pp. 479-496
[29] J. Phys. D, Appl. Phys., 43 (2010), p. 153001
[30] J. Phys. Chem. A, Mol. Spectrosc. Kinet. Environ. Gen. Theory, 114 (2010), pp. 10076-10089
[31] J. Cryst. Growth, 271 (2004), pp. 409-419
[32] J. Phys. Condens. Matter, 21 (2009), p. 364202
[33] Diam. Relat. Mater., 24 (2012), pp. 210-214
[34] Diam. Relat. Mater., 20 (2011), pp. 480-484
[35] Diam. Relat. Mater., 17 (2008), pp. 1035-1038
[36] Appl. Phys. Express, 4 (2011)
[37] Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 366 (2008), pp. 295-311
[38] Appl. Phys. Lett., 93 (2008), pp. 031502-031503
[39] Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 342 (1993), pp. 209-224
[40] Diam. Relat. Mater., 7 (1998), pp. 88-95
[41] J. Chem. Phys., 111 (1999), pp. 4291-4299
[42] Diam. Relat. Mater., 3 (1994), pp. 373-381
[43] Diam. Relat. Mater., 13 (2004), pp. 1954-1958
[44] Diam. Relat. Mater., 16 (2007), pp. 685-689
[45] Diam. Relat. Mater., 7 (1998), pp. 348-355
[46] Appl. Phys. Lett., 94 (2009), pp. 224101-224103
[47] Crystal Growth for Beginners, Fundamentals of Nucleation, Growth and Epitaxy, World Scientific, 2004
[48] J. Cryst. Growth, 317 (2011), pp. 60-63
[49] J. Phys. D, Appl. Phys., 40 (2007), pp. 6175-6188
[50] J. Phys. D, Appl. Phys., 35 (2002), pp. 1939-1945
[51] A. Gicquel, F. Silva, X. Duten, K. Hassouni, G. Lombardi, A. Rousseau, French Patent, July 2004, FR2849867.
[52] A. Gicquel, F. Silva, X. Duten, K. Hassouni, G. Lombardi, A. Rousseau, U.S. Patent, February 2010, 7662441 B2.
[53] Diam. Relat. Mater., 18 (2009), pp. 750-758
[54] Diam. Relat. Mater., 16 (2007), pp. 1295-1299
[55] Phys. Status Solidi, a Appl. Res., 208 (2011), pp. 2028-2032
[56] Thin Solid Films, 310 (1997), pp. 39-46
[57] J. Cryst. Growth, 237–239 (2002), pp. 1269-1276
[58] Phys. Status Solidi, a Appl. Res., 208 (2011), pp. 2023-2027
[59] Phys. Status Solidi, a Appl. Res., 203 (2006), pp. 3049-3055
[60] Diam. Relat. Mater., 2 (1993), p. 158
[61] Diam. Relat. Mater., 17 (2008), pp. 1067-1075
[62] Phys. Status Solidi, a Appl. Res., 205 (2008), pp. 2114-2120
[63] Diam. Relat. Mater., 20 (2011), pp. 875-881
[64] Diam. Relat. Mater., 18 (2009), pp. 682-697
[65] Diam. Relat. Mater., 14 (2005), pp. 1743-1746
[66] Diam. Relat. Mater., 4 (1994), pp. 76-82
[67] Thin Solid Films, 308–309 (1997), pp. 178-185
[68] Diam. Relat. Mater., 4 (1995), pp. 1025-1031
[69] Appl. Phys. Express, 3 (2010), p. 051301
[70] Diam. Relat. Mater., 24 (2012), pp. 29-33
[71] Optical Properties of Diamond: A Data Handbook, Springer, 2001
[72] J. Phys. Condens. Matter, 21 (2009), p. 364216
[73] Diam. Relat. Mater., 5 (1996), pp. 1516-1518
[74] Phys. Rev. Lett., 92 (2004), p. 135502
[75] Diam. Relat. Mater., 10 (2001), pp. 399-404
[76] Appl. Phys. Lett., 100 (2012), p. 071902
[77] Phys. Status Solidi, a Appl. Res., 201 (2004), pp. 2473-2485
[78] Diam. Relat. Mater., 15 (2006), pp. 1700-1707
[79] Appl. Phys. Lett., 87 (2005), p. 261909
[80] New J. Phys., 13 (2011), p. 025014
[81] Small, 6 (2010), pp. 2117-2121
[82] Phys. Status Solidi, a Appl. Res., 208 (2011), pp. 2051-2056
[83] Appl. Phys. Lett., 100 (2012), p. 122107
[84] Science, 324 (2009), pp. 1425-1428
[85] Gems. Gemol., 47 (2011), pp. 202-207
[86] Phys. Rev. B, 77 (2008), p. 245205
[87] Phys. Rev. B, 72 (2005), p. 035214
[88] Phys. Status Solidi, a Appl. Res., 208 (2011), pp. 2038-2044
[89] Diam. Relat. Mater., 17 (2008), pp. 60-65
[90] Phys. Status Solidi, a Appl. Res., 204 (2007), pp. 4298-4304
[91] Phys. Rev. B, 65 (2002), p. 205206
[92] Phys. Rev. B, 65 (2002), p. 205205
[93] Phys. Status Solidi, a Appl. Res., 203 (2006), pp. 3070-3075
[94] Diam. Relat. Mater., 17 (2008), pp. 262-269
[95] Phys. Status Solidi, a Appl. Res., 201 (2004), pp. 2419-2424
[96] Diam. Relat. Mater., 18 (2009), pp. 1205-1210
[97] Diam. Relat. Mater., 26 (2012), pp. 45-49
[98] Phys. Status Solidi, a Appl. Res., 203 (2006), pp. 3358-3366
[99] Diam. Relat. Mater., 15 (2006), pp. 548-553
[100] Appl. Phys. Lett., 100 (2012), pp. 192104-192109
[101] Diam. Relat. Mater., 11 (2002), pp. 307-311
[102] Phys. Status Solidi, a Appl. Res., 205 (2008), pp. 2207-2210
[103] Semicond. Semimet., 76 (2003), pp. 183-238
[104] Diam. Relat. Mater., 17 (2008), pp. 1320-1323
[105] Diam. Relat. Mater., 7 (1998), pp. 1390-1393
[106] Diam. Relat. Mater., 18 (2009), pp. 1196-1199
[107] Appl. Phys. Lett., 97 (2010), p. 182101
[108] Diam. Relat. Mater., 20 (2011), pp. 912-916
[109] AIP, 100 (2012), p. 122109
- Hardware Trojan Detection Potential and Limits with the Quantum Diamond Microscope, ACM Journal on Emerging Technologies in Computing Systems, Volume 21 (2025) no. 1, p. 1 | DOI:10.1145/3711712
- Optimizing single crystal diamond mosaic growth: A study on seed thickness variation and pre-growth treatment, Journal of Crystal Growth, Volume 649 (2025), p. 127953 | DOI:10.1016/j.jcrysgro.2024.127953
- Problems in homoepitaxial growth of diamonds using CVD method and ways to solve them, Physics-Uspekhi, Volume 68 (2025) no. 01, p. 3 | DOI:10.3367/ufne.2024.06.039692
- Problems in homoepitaxial growth of diamonds using CVD method and ways to solve them, Uspekhi Fizicheskih Nauk, Volume 195 (2025) no. 01, p. 3 | DOI:10.3367/ufnr.2024.06.039692
- , 2ND INTERNATIONAL CONFERENCE ON ADVANCED EARTH SCIENCE AND FOUNDATION ENGINEERING (ICASF 2023): Advanced Earth Science and Foundation Engineering, Volume 3050 (2024), p. 080006 | DOI:10.1063/5.0187827
- Hot ion implantation to create dense NV center ensembles in diamond, Applied Physics Letters, Volume 124 (2024) no. 13 | DOI:10.1063/5.0196719
- Thick crack-free 113 epitaxial boron-doped diamond layers for power electronics—Deposition with nitrogen addition and high microwave power, Applied Physics Letters, Volume 124 (2024) no. 16 | DOI:10.1063/5.0200233
- Growth of homoepitaxial single crystal diamond by microwave plasma CVD in H2-CH4-O2 gas mixtures at high microwave power densities, Diamond and Related Materials, Volume 150 (2024), p. 111721 | DOI:10.1016/j.diamond.2024.111721
- Scalable Production and Supply Chain of Diamond Wafers Using Microwave Plasma: A Mini-Review, IEEE Transactions on Plasma Science, Volume 52 (2024) no. 4, p. 1082 | DOI:10.1109/tps.2023.3339338
- Formation of misoriented blocks during single-crystal CVD diamond growth, International Journal of Refractory Metals and Hard Materials, Volume 120 (2024), p. 106571 | DOI:10.1016/j.ijrmhm.2024.106571
- Recent progress in homoepitaxial single-crystal diamond growth via MPCVD, Journal of Materials Science: Materials in Electronics, Volume 35 (2024) no. 7 | DOI:10.1007/s10854-024-12267-3
- Magnetic Resonance Study of Bulky CVD Diamond Disc, Materials, Volume 17 (2024) no. 8, p. 1871 | DOI:10.3390/ma17081871
- Single-crystal diamond grown through high-power-density epitaxy used for a high-performance radiation detector, Science China Materials, Volume 67 (2024) no. 7, p. 2329 | DOI:10.1007/s40843-024-2955-x
- Nanoparticles synthesis in microwave plasmas: peculiarities and comprehensive insight, Scientific Reports, Volume 14 (2024) no. 1 | DOI:10.1038/s41598-023-49818-3
- Investigation on growth rate and quality of diamond materials in MPCVD system, Semiconductor Science and Technology, Volume 39 (2024) no. 11, p. 115013 | DOI:10.1088/1361-6641/ad7d2b
- Nanodiamond Coating in Energy and Engineering Fields: Synthesis Methods, Characteristics, and Applications, Small (2024) | DOI:10.1002/smll.202401292
- Interfacial improvement of diamond through epitaxial lateral overgrowth with periodic Ir/SiO2/Ir stripe mask, Vacuum, Volume 227 (2024), p. 113446 | DOI:10.1016/j.vacuum.2024.113446
- Control of silicon dioxide etching rate in hydrogen microwave plasma by addition of oxygen, Applied Surface Science, Volume 612 (2023), p. 155834 | DOI:10.1016/j.apsusc.2022.155834
- Combination of ERDA, FTIR spectroscopy and NanoSIMS for the characterization of hydrogen incorporation in natural diamonds, Diamond and Related Materials, Volume 136 (2023), p. 110007 | DOI:10.1016/j.diamond.2023.110007
- Numerical study of thermal shock on infrared windows and their composites with diamond coatings under harsh conditions, Diamond and Related Materials, Volume 137 (2023), p. 110117 | DOI:10.1016/j.diamond.2023.110117
- High temperature stability of H-diamond high frequency MOSFET with 300°C grown Al2O3dielectric, Functional Diamond, Volume 3 (2023) no. 1 | DOI:10.1080/26941112.2023.2219687
- GAS-JET SYNTHESIS OF DIAMOND COATINGS ON SILICON SUBSTRATES FROM AN H2 + CH4 + Ar MIXTURE ACTIVATED IN A MICROWAVE DISCHARGE, Journal of Applied Mechanics and Technical Physics, Volume 64 (2023) no. 5, p. 748 | DOI:10.1134/s0021894423050024
- Rapid Growth of Single Crystal Diamond at High Energy Density by Plasma Focusing, Journal of Inorganic Materials, Volume 38 (2023) no. 3, p. 303 | DOI:10.15541/jim20220633
- Nitrogen centers in single crystal diamond grown by chemical vapor deposition, Journal of Vacuum Science Technology A, Volume 41 (2023) no. 4 | DOI:10.1116/6.0002622
- Applications of carbon-based diamond detectors: A critical review, Materials Today Communications, Volume 36 (2023), p. 106409 | DOI:10.1016/j.mtcomm.2023.106409
- Nongrowth regime in microwave chemical vapor deposition reactor due to formation of plasma nonhomogeneity, Plasma Processes and Polymers, Volume 20 (2023) no. 10 | DOI:10.1002/ppap.202300073
- High frequency single crystalline diamond MOSFET with high temperature (300 °C) ALD grown Al2O3 dielectric, Results in Physics, Volume 49 (2023), p. 106517 | DOI:10.1016/j.rinp.2023.106517
- Effects of argon plasma pretreatment of Si wafers on Si-Si bonding based on Mo/Au interlayers, Surface Topography: Metrology and Properties, Volume 11 (2023) no. 2, p. 025013 | DOI:10.1088/2051-672x/acd569
- Effect of argon on microwave plasma chemical vapor deposition of diamond coatings from an H2+CH4+Ar mixture activated in a microwave discharge, Thermophysics and Aeromechanics, Volume 30 (2023) no. 3, p. 393 | DOI:10.1134/s0869864323030010
- , 8th International Congress on Energy Fluxes and Radiation Effects (2022), p. 1511 | DOI:10.56761/efre2022.n4-p-911101
- , 8th International Congress on Energy Fluxes and Radiation Effects (2022), p. 225 | DOI:10.56761/efre2022.s3-o-023301
- Enhancement of the creation yield of NV ensembles in a chemically vapour deposited diamond, Carbon, Volume 194 (2022), p. 282 | DOI:10.1016/j.carbon.2022.04.005
- Nanostructured Diamond Composites for Multifunctional Sensing Applications, Chemosensors, Volume 10 (2022) no. 11, p. 488 | DOI:10.3390/chemosensors10110488
- Low-resistance ohmic contacts on boron-doped 113 oriented homoepitaxial diamond layers, Diamond and Related Materials, Volume 121 (2022), p. 108797 | DOI:10.1016/j.diamond.2021.108797
- Investigation of the cooling enhancement of a single crystal diamond heat sink with embedded microfluidic channels, Diamond and Related Materials, Volume 130 (2022), p. 109470 | DOI:10.1016/j.diamond.2022.109470
- High charge collection efficiency detector based on plasma purified high-quality diamond, Diamond and Related Materials, Volume 130 (2022), p. 109527 | DOI:10.1016/j.diamond.2022.109527
- Gas-Jet Synthesis of Diamond Coatings from a H2+CH4+Ar Mixture Activated in a Microwave Discharge, Doklady Physics, Volume 67 (2022) no. 7, p. 197 | DOI:10.1134/s1028335822070047
- Simulation of diamond synthesis by microwave plasma chemical vapor deposition with multiple substrates in a substrate holder, Journal of Crystal Growth, Volume 579 (2022), p. 126457 | DOI:10.1016/j.jcrysgro.2021.126457
- Effect of methane flow rate on gas-jet MPCVD diamond synthesis, Journal of Physics D: Applied Physics, Volume 55 (2022) no. 20, p. 205202 | DOI:10.1088/1361-6463/ac526e
- Growth and Characterization of Polycrystalline CVD Diamond Films Obtained by MWPACVD at High Power 2,45GHz Microwave Discharge, Materials Research, Volume 25 (2022) no. suppl 2 | DOI:10.1590/1980-5373-mr-2022-0052
- Effect of intrinsic defects on the electronic structure and thermoelectricity of two-dimensional boron arsenide, Micro and Nanostructures, Volume 165 (2022), p. 207188 | DOI:10.1016/j.micrna.2022.207188
- Regeneration Growth as One of the Principal Stages of Diamond Crystallogenesis, Minerals, Volume 12 (2022) no. 3, p. 327 | DOI:10.3390/min12030327
- Molecular dynamics simulation for plastic deformation mechanisms of single crystal diamond during nanoindentation, Molecular Simulation, Volume 48 (2022) no. 11, p. 991 | DOI:10.1080/08927022.2022.2060506
- Digital micro-photogrammetry in analysis and modeling habit and sectoral structure of real high-pressure high-temperature single-crystal diamonds, Review of Scientific Instruments, Volume 93 (2022) no. 3 | DOI:10.1063/5.0078022
- Diamond Spectroscopy, Defect Centers, Color, and Treatments, Reviews in Mineralogy and Geochemistry, Volume 88 (2022) no. 1, p. 637 | DOI:10.2138/rmg.2022.88.12
- Synthesis of Diamonds and Their Identification, Reviews in Mineralogy and Geochemistry, Volume 88 (2022) no. 1, p. 689 | DOI:10.2138/rmg.2022.88.13
- Homoepitaxial lateral growth of single-crystal diamond with eliminating PCD rim and enlarging surface area, Vacuum, Volume 197 (2022), p. 110820 | DOI:10.1016/j.vacuum.2021.110820
- Effect of adding an upper-substrate holder in the quartz-tube MPCVD on plasma parameters, Vacuum, Volume 197 (2022), p. 110846 | DOI:10.1016/j.vacuum.2021.110846
- Hydrogen microwave plasma etching of silicon dioxide at high temperatures with in situ low-coherence interferometry control, Vacuum, Volume 199 (2022), p. 110939 | DOI:10.1016/j.vacuum.2022.110939
- Growth of single-crystal diamond by microwave plasma CVD with high precursor utilization using cyclic gas injection and control of carbonaceous species content with optical emission spectroscopy, Vacuum, Volume 206 (2022), p. 111529 | DOI:10.1016/j.vacuum.2022.111529
- H-diamond MOS interface properties and FET characteristics with high-temperature ALD-grown HfO2 dielectric, AIP Advances, Volume 11 (2021) no. 3 | DOI:10.1063/5.0044004
- Electroluminescence of NV by impact excitation and Stark shift in a MIM diamond structure, Applied Physics Letters, Volume 119 (2021) no. 25 | DOI:10.1063/5.0076762
- Crystallomorphological and Crystallochemical Indicators of Diamond Formation Conditions, Crystallography Reports, Volume 66 (2021) no. 1, p. 142 | DOI:10.1134/s1063774521010119
- Properties of boron-doped (113) oriented homoepitaxial diamond layers, Diamond and Related Materials, Volume 111 (2021), p. 108223 | DOI:10.1016/j.diamond.2020.108223
- Coupling effects of methane concentration and nitrogen addition level on morphologies and properties of MPCVD diamond films on WC-Co substrates, Diamond and Related Materials, Volume 117 (2021), p. 108487 | DOI:10.1016/j.diamond.2021.108487
- High quality CVD single crystal diamonds grown on nanorods patterned diamond seed, Diamond and Related Materials, Volume 119 (2021), p. 108605 | DOI:10.1016/j.diamond.2021.108605
- The growth behavior and surface performance enhancement of diamond film deposited on polycrystalline diamond compact, Diamond and Related Materials, Volume 120 (2021), p. 108682 | DOI:10.1016/j.diamond.2021.108682
- Coessential-connection by microwave plasma chemical vapor deposition: a common process towards wafer scale single crystal diamond, Functional Diamond, Volume 1 (2021) no. 1, p. 47 | DOI:10.1080/26941112.2020.1869511
- Properties of Diamond-Based Neutron Detectors Operated in Harsh Environments, Journal of Nuclear Engineering, Volume 2 (2021) no. 4, p. 422 | DOI:10.3390/jne2040032
- Charge transport in single crystal CVD diamond studied at high temperatures, Journal of Physics D: Applied Physics, Volume 54 (2021) no. 46, p. 465103 | DOI:10.1088/1361-6463/ac1e4e
- Surface Morphology and Microstructure Evolution of Single Crystal Diamond during Different Homoepitaxial Growth Stages, Materials, Volume 14 (2021) no. 20, p. 5964 | DOI:10.3390/ma14205964
- Gemological Characteristic Difference between Colorless CVD Synthetic Diamonds and Natural Diamonds, Materials, Volume 14 (2021) no. 20, p. 6225 | DOI:10.3390/ma14206225
- Optical Properties of Bulk Single-Crystal Diamonds at 80–1200 K by Vibrational Spectroscopic Methods, Materials, Volume 14 (2021) no. 23, p. 7435 | DOI:10.3390/ma14237435
- Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications, Materials for Quantum Technology, Volume 1 (2021) no. 2, p. 025001 | DOI:10.1088/2633-4356/abd88a
- , Quantum Technology: Driving Commercialisation of an Enabling Science II (2021), p. 24 | DOI:10.1117/12.2601348
- Synthesis of diamond films on W mono-blocks by MWCVD for modification of fusion materials, Surface and Coatings Technology, Volume 421 (2021), p. 127392 | DOI:10.1016/j.surfcoat.2021.127392
- Theoretical and experimental aspects of non-equilibrium plasmas in different regimes: fundamentals and selected applications, The European Physical Journal D, Volume 75 (2021) no. 6 | DOI:10.1140/epjd/s10053-021-00186-5
- Imaging and Modeling C2 Radical Emissions from Microwave Plasma-Activated Methane/Hydrogen Gas Mixtures: Contributions from Chemiluminescent Reactions and Investigations of Higher-Pressure Effects and Plasma Constriction, The Journal of Physical Chemistry A, Volume 125 (2021) no. 19, p. 4184 | DOI:10.1021/acs.jpca.1c01924
- High temperature (300 °C) ALD grown Al2O3 on hydrogen terminated diamond: Band offset and electrical properties of the MOSFETs, Applied Physics Letters, Volume 116 (2020) no. 1 | DOI:10.1063/1.5126359
- Conversions of a stacking fault to threading dislocations in homoepitaxial diamond growth studied by transmission electron microscopy, Applied Physics Letters, Volume 117 (2020) no. 22 | DOI:10.1063/5.0031367
- High NV density in a pink CVD diamond grown with N2O addition, Carbon, Volume 170 (2020), p. 421 | DOI:10.1016/j.carbon.2020.08.048
- Nitrogen in Diamond, Chemical Reviews, Volume 120 (2020) no. 12, p. 5745 | DOI:10.1021/acs.chemrev.9b00518
- Ab initio calculations of the thermal properties of boron arsenide, Computational Materials Science, Volume 184 (2020), p. 109887 | DOI:10.1016/j.commatsci.2020.109887
- Study on the lateral growth of the diamond in the substrate holder and the effect of temperature gradient on the large-area diamond surface morphology, Journal of Materials Science, Volume 55 (2020) no. 36, p. 17072 | DOI:10.1007/s10853-020-05256-4
- Chemical vapour deposition diamond single crystals with nitrogen-vacancy centres: a review of material synthesis and technology for quantum sensing applications, Journal of Physics D: Applied Physics, Volume 53 (2020) no. 31, p. 313001 | DOI:10.1088/1361-6463/ab81d1
- Double-Crystal X-Ray Diffractometry and Topography Methods in the Analysis of the Real Structure of Crystals, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, Volume 14 (2020) no. 6, p. 1113 | DOI:10.1134/s1027451020060130
- Investigation of homoepitaxial growth by microwave plasma CVD providing high growth rate and high quality of diamond simultaneously, Materials Today Communications, Volume 22 (2020), p. 100816 | DOI:10.1016/j.mtcomm.2019.100816
- Evolution of defects, morphologies and fundamental growth characteristics of CVD diamond films induced by nitrogen addition, Materials Today Communications, Volume 25 (2020), p. 101504 | DOI:10.1016/j.mtcomm.2020.101504
- CVD Diamond and Nanodiamond: Versatile Materials for Countering a Wide Range of CBRN Threats, Nanoscience and Nanotechnology in Security and Protection against CBRN Threats (2020), p. 141 | DOI:10.1007/978-94-024-2018-0_12
- Decoration of growth sector boundaries with nitrogen vacancy centers in as-grown single crystal high-pressure high-temperature synthetic diamond, Physical Review Materials, Volume 4 (2020) no. 9 | DOI:10.1103/physrevmaterials.4.093402
- Composition of volatile components in the polycrystalline CVD diamond (by coupled gas chromatographic–mass spectrometric analysis), Carbon Letters, Volume 29 (2019) no. 4, p. 327 | DOI:10.1007/s42823-019-00037-9
- Analysis of improving the edge quality and growth rate of single-crystal diamond growth using a substrate holder, CrystEngComm, Volume 21 (2019) no. 43, p. 6574 | DOI:10.1039/c9ce01402k
- Enhanced deposition rate of polycrystalline CVD diamond at high microwave power densities, Diamond and Related Materials, Volume 97 (2019), p. 107466 | DOI:10.1016/j.diamond.2019.107466
- Recent progress in diamond-based MOSFETs, International Journal of Minerals, Metallurgy, and Materials, Volume 26 (2019) no. 10, p. 1195 | DOI:10.1007/s12613-019-1843-4
- Multivariable study on growth of diamond on diamond substrates by microwave plasma chemical vapour deposition, Materials Research Express, Volume 6 (2019) no. 4, p. 046407 | DOI:10.1088/2053-1591/aafae3
- Laser monitor for imaging single crystal diamond growth in H2-CH4 microwave plasma, Optics Laser Technology, Volume 120 (2019), p. 105716 | DOI:10.1016/j.optlastec.2019.105716
- Diamond, Single Crystals of Electronic Materials (2019), p. 331 | DOI:10.1016/b978-0-08-102096-8.00010-0
- Semiconductor diamond, Ultra-Wide Bandgap Semiconductor Materials (2019), p. 111 | DOI:10.1016/b978-0-12-815468-7.00002-0
- Luminescent diamond window of the sandwich type for X-ray visualization, Applied Physics A, Volume 124 (2018) no. 12 | DOI:10.1007/s00339-018-2230-0
- Effects of metallic interlayers on the performance of nanocrystalline diamond metal-semiconductor-metal photodetectors, Applied Surface Science, Volume 455 (2018), p. 581 | DOI:10.1016/j.apsusc.2018.04.196
- Growth and Characterization of the Laterally Enlarged Single Crystal Diamond Grown by Microwave Plasma Chemical Vapor Deposition, Chinese Physics Letters, Volume 35 (2018) no. 7, p. 078101 | DOI:10.1088/0256-307x/35/7/078101
- Relationship between Birefringence and Surface Morphology in Single‐Crystal Diamonds Grown by MPCVD, Crystal Research and Technology, Volume 53 (2018) no. 7 | DOI:10.1002/crat.201800055
- The Many Facets of Diamond Crystals, Crystals, Volume 8 (2018) no. 2, p. 72 | DOI:10.3390/cryst8020072
- Diamond films and particles growth in hydrogen microwave plasma with graphite solid precursor: Optical emission spectroscopy study, Diamond and Related Materials, Volume 82 (2018), p. 33 | DOI:10.1016/j.diamond.2017.12.020
- Reduction of dislocation densities in single crystal CVD diamond by confinement in the lateral sector, Diamond and Related Materials, Volume 83 (2018), p. 162 | DOI:10.1016/j.diamond.2018.02.010
- Diamond Diode Structures Based on Homoepitaxial Films, Journal of Communications Technology and Electronics, Volume 63 (2018) no. 7, p. 828 | DOI:10.1134/s1064226918070148
- Morphological and structural evolution on the lateral face of the diamond seed by MPCVD homoepitaxial deposition, Journal of Crystal Growth, Volume 484 (2018), p. 1 | DOI:10.1016/j.jcrysgro.2017.12.022
- Vertical-substrate epitaxial growth of single-crystal diamond by microwave plasma-assisted chemical vapor deposition, Journal of Crystal Growth, Volume 486 (2018), p. 104 | DOI:10.1016/j.jcrysgro.2018.01.024
- Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD, Journal of Crystal Growth, Volume 491 (2018), p. 89 | DOI:10.1016/j.jcrysgro.2018.03.046
- Room-temperature bonding of single-crystal diamond and Si using Au/Au atomic diffusion bonding in atmospheric air, Microelectronic Engineering, Volume 195 (2018), p. 68 | DOI:10.1016/j.mee.2018.03.025
- Diamond wafer technologies for semiconductor device applications, Power Electronics Device Applications of Diamond Semiconductors (2018), p. 1 | DOI:10.1016/b978-0-08-102183-5.00001-7
- Substrate Effects on Charge Carrier Transport Properties of Single‐Crystal CVD Diamonds and an 8 mm Square Radiation Energy Spectrometer, physica status solidi (a), Volume 215 (2018) no. 22 | DOI:10.1002/pssa.201800333
- Reduction of Dislocations in Single Crystal Diamond by Lateral Growth over a Macroscopic Hole, Advanced Materials, Volume 29 (2017) no. 16 | DOI:10.1002/adma.201604823
- Highly photostable NV centre ensembles in CVD diamond produced by using N2O as the doping gas, Applied Physics Letters, Volume 111 (2017) no. 14 | DOI:10.1063/1.5004106
- Morphology of Diamond Layers Grown on Different Facets of Single Crystal Diamond Substrates by a Microwave Plasma CVD in CH4-H2-N2 Gas Mixtures, Crystals, Volume 7 (2017) no. 6, p. 166 | DOI:10.3390/cryst7060166
- Express in situ measurement of epitaxial CVD diamond film growth kinetics, Diamond and Related Materials, Volume 72 (2017), p. 61 | DOI:10.1016/j.diamond.2016.12.021
- Plasma etching phenomena in heavily boron-doped diamond growth, Diamond and Related Materials, Volume 76 (2017), p. 38 | DOI:10.1016/j.diamond.2017.04.007
- Thick CVD diamond films grown on high-quality type IIa HPHT diamond substrates from New Diamond Technology, Diamond and Related Materials, Volume 77 (2017), p. 146 | DOI:10.1016/j.diamond.2017.07.002
- Thick heavily boron doped CVD diamond films homoepitaxially grown on (111)-oriented substrates, Diamond and Related Materials, Volume 79 (2017), p. 108 | DOI:10.1016/j.diamond.2017.08.017
- Extending microwave plasma assisted CVD SCD growth to pressures of 400 Torr, Diamond and Related Materials, Volume 79 (2017), p. 150 | DOI:10.1016/j.diamond.2017.09.013
- MPACVD growth of single crystalline diamond substrates with PCD rimless and expanding surfaces, Applied Physics Letters, Volume 109 (2016) no. 16 | DOI:10.1063/1.4965025
- Short-pulse excitation of microwave plasma for efficient diamond growth, Applied Physics Letters, Volume 109 (2016) no. 9 | DOI:10.1063/1.4962218
- Optimization of Growth Parameters for Diamond Films Grown by MPCVD Using Response Surface Methodology, Arabian Journal for Science and Engineering, Volume 41 (2016) no. 7, p. 2671 | DOI:10.1007/s13369-016-2169-4
- Effects of Mg on diamond growth and properties in Fe–C system under high pressure and high temperature condition, Chinese Physics B, Volume 25 (2016) no. 8, p. 088104 | DOI:10.1088/1674-1056/25/8/088104
- Identification of Dislocations in Synthetic Chemically Vapor Deposited Diamond Single Crystals, Crystal Growth Design, Volume 16 (2016) no. 5, p. 2741 | DOI:10.1021/acs.cgd.6b00053
- X-ray diffraction characterization of epitaxial CVD diamond films with natural and isotopically modified compositions, Crystallography Reports, Volume 61 (2016) no. 6, p. 979 | DOI:10.1134/s1063774516060122
- High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation, Diamond and Related Materials, Volume 62 (2016), p. 49 | DOI:10.1016/j.diamond.2015.12.001
- The influence of recess depth and crystallographic orientation of seed sides on homoepitaxial growth of CVD single crystal diamonds, Diamond and Related Materials, Volume 65 (2016), p. 144 | DOI:10.1016/j.diamond.2016.03.011
- Development of a plate-to-plate MPCVD reactor configuration for diamond synthesis, Diamond and Related Materials, Volume 66 (2016), p. 135 | DOI:10.1016/j.diamond.2016.04.008
- Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium, Diamond and Related Materials, Volume 66 (2016), p. 188 | DOI:10.1016/j.diamond.2016.04.006
- Analyses of single crystal diamond substrates grown in a pocket substrate holder via MPACVD, Diamond and Related Materials, Volume 66 (2016), p. 36 | DOI:10.1016/j.diamond.2016.03.007
- Synthesis of single crystal diamond by microwave plasma assisted chemical vapor deposition with in situ low-coherence interferometric control of growth rate, Diamond and Related Materials, Volume 66 (2016), p. 83 | DOI:10.1016/j.diamond.2016.03.023
- Microwave Plasmas: Single Crystal Diamond Synthesis, Encyclopedia of Plasma Technology (2016), p. 806 | DOI:10.1081/e-eplt-120054008
- Synergetic surface modification effect of argon and oxygen for diamond films by MPCVD, Green Processing and Synthesis, Volume 5 (2016) no. 3, p. 311 | DOI:10.1515/gps-2015-0135
- Crystallization of HPHT diamond crystals in a floatage system under the influence of nitrogen and hydrogen simultaneously, CrystEngComm, Volume 17 (2015) no. 34, p. 6504 | DOI:10.1039/c5ce01225b
- High-pressure synthesis and characterization of diamond from an Mg–Si–C system, CrystEngComm, Volume 17 (2015) no. 38, p. 7323 | DOI:10.1039/c5ce01265a
- A geometric model of growth for cubic crystals: Diamond, Diamond and Related Materials, Volume 53 (2015), p. 58 | DOI:10.1016/j.diamond.2014.12.010
- Numerical microwave plasma discharge study for the growth of large single-crystal diamond, Diamond and Related Materials, Volume 54 (2015), p. 9 | DOI:10.1016/j.diamond.2014.11.005
- Effects of crystallographic orientation on the homoepitaxial overgrowth on tiled single crystal diamond clones, Diamond and Related Materials, Volume 57 (2015), p. 17 | DOI:10.1016/j.diamond.2015.01.007
- Growth strategies for large and high quality single crystal diamond substrates, Diamond and Related Materials, Volume 60 (2015), p. 26 | DOI:10.1016/j.diamond.2015.09.018
- Epitaxy of Carbon-Based Materials, Handbook of Crystal Growth (2015), p. 605 | DOI:10.1016/b978-0-444-63304-0.00014-7
- Crystal Growth of Diamond, Handbook of Crystal Growth (2015), p. 671 | DOI:10.1016/b978-0-444-63303-3.00017-1
- Temperature dependence of the Raman line width in diamond: Revisited, Journal of Raman Spectroscopy, Volume 46 (2015) no. 1, p. 171 | DOI:10.1002/jrs.4604
- Surface Chemistry of Diamond, Novel Aspects of Diamond, Volume 121 (2015), p. 53 | DOI:10.1007/978-3-319-09834-0_3
- Prospects for the synthesis of large single-crystal diamonds, Physics-Uspekhi, Volume 58 (2015) no. 2, p. 134 | DOI:10.3367/ufne.0185.201502b.0143
- Unintentional tungsten incorporation in diamond during hot-filament chemical vapor deposition, Transactions of the Materials Research Society of Japan, Volume 40 (2015) no. 1, p. 47 | DOI:10.14723/tmrsj.40.47
- Prospects for the synthesis of large single-crystal diamonds, Uspekhi Fizicheskih Nauk, Volume 185 (2015) no. 2, p. 143 | DOI:10.3367/ufnr.0185.201502b.0143
- Optical study of defects in thick undoped CVD synthetic diamond layers, Diamond and Related Materials, Volume 41 (2014), p. 25 | DOI:10.1016/j.diamond.2013.09.010
- High quality thick CVD diamond films homoepitaxially grown on (111)-oriented substrates, Diamond and Related Materials, Volume 41 (2014), p. 34 | DOI:10.1016/j.diamond.2013.11.002
- Characterization of free-standing single-crystal diamond prepared by hot-filament chemical vapor deposition, Diamond and Related Materials, Volume 48 (2014), p. 19 | DOI:10.1016/j.diamond.2014.06.001
- Effect of CVD diamond growth by doping with nitrogen, Theoretical Chemistry Accounts, Volume 133 (2014) no. 2 | DOI:10.1007/s00214-013-1432-y
- Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo‐mechanical or ICP treatment of HPHT substrates, physica status solidi (a), Volume 211 (2014) no. 10, p. 2264 | DOI:10.1002/pssa.201431181
- Multi-dipolar microwave plasmas and their application to negative ion production, Physics of Plasmas, Volume 20 (2013) no. 10 | DOI:10.1063/1.4823466
Cité par 143 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier