Comptes Rendus
Growth of a strained epitaxial film on a patterned substrate
[Croissance dʼun film épitaxié contraint sur un substrat patterné]
Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 199-207.

Nous étudions lʼinfluence de la cinétique de croissance sur lʼinstabilité dʼAsaro–Tiller–Grinfelʼd qui se développe sur un film mince sur un substrat structuré. Nous utilisons un modèle continu qui est résolu au premier ordre en la pente de la surface. Les interactions de mouillage ainsi que le champ élastique induit par lʼinterface film/substrat introduisent une dépendance explicite dans lʼépaisseur du film. En conséquence, la symétrie par translation dans la direction de croissance est brisée et le flux de déposition nʼest pas un paramètre trivial de lʼinstabilité. Comme dans le cas du recuit, nous trouvons que lʼinstabilité peut évoluer dʼune configuration en phase vers une configuration en opposition de phase avec le substrat, en fonction du temps de déposition et de lʼépaisseur du film. Nous comparons lʼévolution de lʼinstabilité pour différents flux de croissance. Le diagramme des phases cinétique obtenu dans le cas du recuit rend aussi compte de lʼévolution du film lors de la croissance dans ses conditions courantes.

We study the influence of the growth kinetics on the Asaro–Tiller–Grinfelʼd instability of a thin film deposited on a patterned substrate. We use a continuum model that we solve at first order in the surface slope. Both wetting interactions and elastic fields induced by the film/substrate interface introduce an explicit dependence on the film thickness. As a consequence, the translational symmetry in the growth direction is broken and the deposition flux cannot be trivially accounted for. Similarly to the evolution during annealing, the instability can skip during growth from an in-phase to an out-of-phase geometry depending on the growth duration and film thickness. We compare the evolution of the instability using different deposition fluxes. We find that the kinetic phase diagram found in the annealing case also explains the evolution during growth in usual growth conditions.

Publié le :
DOI : 10.1016/j.crhy.2012.11.006
Keywords: Strained epitaxial film, Asaro–Tiller–Grinfelʼd instability, Patterning
Mot clés : Film épitaxié contraint, Instabilité dʼAsaro–Tiller–Grinfelʼd, Structuration
Xianbin Xu 1 ; Jean-Noël Aqua 1 ; Thomas Frisch 2

1 Institut des nanosciences de Paris, université Pierre-et-Marie-Curie–Paris-6, CNRS UMR 7588, 4, place Jussieu, 75252 Paris, France
2 Institut non linéaire de Nice, université de Nice–Sophia Antipolis, CNRS UMR 6618, 1361, routes des Lucioles, 06560 Valbonne, France
@article{CRPHYS_2013__14_2-3_199_0,
     author = {Xianbin Xu and Jean-No\"el Aqua and Thomas Frisch},
     title = {Growth of a strained epitaxial film on a patterned substrate},
     journal = {Comptes Rendus. Physique},
     pages = {199--207},
     publisher = {Elsevier},
     volume = {14},
     number = {2-3},
     year = {2013},
     doi = {10.1016/j.crhy.2012.11.006},
     language = {en},
}
TY  - JOUR
AU  - Xianbin Xu
AU  - Jean-Noël Aqua
AU  - Thomas Frisch
TI  - Growth of a strained epitaxial film on a patterned substrate
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 199
EP  - 207
VL  - 14
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.11.006
LA  - en
ID  - CRPHYS_2013__14_2-3_199_0
ER  - 
%0 Journal Article
%A Xianbin Xu
%A Jean-Noël Aqua
%A Thomas Frisch
%T Growth of a strained epitaxial film on a patterned substrate
%J Comptes Rendus. Physique
%D 2013
%P 199-207
%V 14
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2012.11.006
%G en
%F CRPHYS_2013__14_2-3_199_0
Xianbin Xu; Jean-Noël Aqua; Thomas Frisch. Growth of a strained epitaxial film on a patterned substrate. Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 199-207. doi : 10.1016/j.crhy.2012.11.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.11.006/

[1] B. Voigtänder Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth, Surf. Sci. Rep., Volume 43 (2001), p. 127

[2] J. Stangl; V. Holý; G. Bauer Structural properties of self-organized semiconductor nanostructures, Rev. Mod. Phys., Volume 76 (2004), p. 725

[3] I. Berbezier; A. Ronda SiGe nanostructures, Surf. Sci. Rep., Volume 64 (2009), p. 47

[4] D.S.L. Mui; D. Leonard; L.A. Coldren; P.M. Petroff Surface migration induced self-aligned InAs islands grown by molecular beam epitaxy, Appl. Phys. Lett., Volume 66 (1995), p. 1620

[5] W. Seifert; N. Carlsson; A. Petersson; L.E. Wernersson; L. Samuelson Alignment of InP Stranski–Krastanow dots by growth on patterned GaAs/GaInP surfaces, Appl. Phys. Lett., Volume 68 (1996), p. 1684

[6] T. Ishikawa; S. Kohmoto; K. Asakawa Site control of self-organized InAs dots on GaAs substrates by in situ electron-beam lithography and molecular-beam epitaxy, Appl. Phys. Lett., Volume 73 (1998), p. 1712

[7] A. Konkar; A. Madhukar; P. Chen Stress-engineered spatially selective self-assembly of strained InAs quantum dots on nonplanar patterned GaAs(001) substrates, Appl. Phys. Lett., Volume 72 (1998), p. 220

[8] E.S. Kim; N. Usami; Y. Shiraki Selective epitaxial growth of dot structures on patterned Si substrates by gas source molecular beam epitaxy, Semicond. Sci. Technol., Volume 14 (1999), p. 257

[9] P.D. Szkutnik; A. Sgarlata; A. Balzarotti; N. Motta; A. Ronda; I. Berbezier Early stage of Ge growth on Si(001) vicinal surfaces with an 8° miscut along [110], Phys. Rev. B, Volume 75 (2007), p. 033305

[10] T.I. Kamins; R.S. Williams Lithographic positioning of self-assembled Ge islands on Si(001), Appl. Phys. Lett., Volume 71 (1997), p. 1201

[11] G. Jin; J.L. Liu; S.G. Thomas; Y.H. Luo; K.L. Wang; B.-Y. Nguyen Controlled arrangement of self-organized Ge islands on patterned Si(001) substrates, Appl. Phys. Lett., Volume 75 (1999), p. 2752

[12] T. Kitajima; B. Liu; S.R. Leone Two-dimensional periodic alignment of self-assembled Ge islands on patterned Si(001) surfaces, Appl. Phys. Lett., Volume 80 (2002), p. 497

[13] B. Yang; F. Liu; M.G. Lagally Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy, Phys. Rev. Lett., Volume 92 (2004), p. 025502

[14] Z. Zhong; W. Schwinger; F. Schäffler; G. Bauer; G. Vastola; F. Montalenti; L. Miglio Delayed plastic relaxation on patterned Si substrates: Coherent SiGe pyramids with dominant {111} facets, Phys. Rev. Lett., Volume 98 (2007), p. 176102

[15] L. Vescan; T. Stoica; B. Hollander; A. Nassiopoulou; A. Olzierski; I. Raptis; E. Sutter Self-assembling of Ge on finite Si(001) areas comparable with the island size, Appl. Phys. Lett., Volume 82 (2003), p. 3517

[16] Z. Zhong; A. Halilovic; M. Muhlberger; F. Schaffler; G. Bauer Ge island formation on stripe-patterned Si(001) substrates, Appl. Phys. Lett., Volume 82 (2003), p. 445

[17] Z. Zhong; A. Halilovic; T. Fromherz; F. Schaffler; G. Bauer Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si(001) substrates, Appl. Phys. Lett., Volume 82 (2003), p. 4779

[18] B. Sanduijav; D. Matei; G. Chen; G. Springholz Shape transitions and island nucleation for Si/Ge molecular beam epitaxy on stripe-patterned Si(001) substrate, Phys. Rev. B, Volume 80 (2009), p. 125329

[19] A. Pascale; I. Berbezier; A. Ronda; P.C. Kelires Self-assembly and ordering mechanisms of Ge islands on prepatterned Si(001), Phys. Rev. B, Volume 77 (2008), p. 075311

[20] H. Wang; Y. Zhang; F. Liu Enhanced growth instability of strained film on wavy substrate, J. Appl. Phys., Volume 104 (2008), p. 054301

[21] H. Hu; H.J. Gao; F. Liu Theory of directed nucleation of strained islands on patterned substrates, Phys. Rev. Lett., Volume 101 (2008), p. 216102

[22] P. Sutter; M.G. Lagally Nucleationless three-dimensional island formation in low-misfit heteroepitaxy, Phys. Rev. Lett., Volume 84 (2000), p. 4637

[23] R.J. Asaro; W.A. Tiller Interface morphology development during stress-corrosion cracking: Part 1. Via surface diffusion, Metall. Trans., Volume 3 (1972), p. 1789

[24] M.A. Grinfeld Instability of the separation boundary between a nonhydrostatically stressed elastic body and a melt, Sov. Phys. Dokl., Volume 31 (1986), p. 831

[25] X. Xu; J. Aqua; T. Frisch Growth kinetics in a strained crystal film on a wavy patterned substrate, J. Phys.: Condens. Matter, Volume 24 (2012), p. 045002

[26] G.-H. Lu; F. Liu Towards quantitative understanding of formation and stability of Ge hut islands on Si(001), Phys. Rev. Lett., Volume 94 (2005), p. 176103

[27] J.-N. Aqua; T. Frisch; A. Verga Nonlinear evolution of a morphological instability in a strained epitaxial film, Phys. Rev. B, Volume 76 (2007), p. 165319

[28] J.-N. Aqua; T. Frisch Influence of surface energy anisotropy on the dynamics of quantum dot growth, Phys. Rev. B, Volume 82 (2010), p. 085322

[29] J.-N. Aqua; T. Frisch; A. Verga Ordering of strained islands during surface growth, Phys. Rev. E, Volume 81 (2010), p. 021605

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Instability-driven quantum dots

Jean-Noël Aqua; Thomas Frisch

C. R. Phys (2015)


Role of patterning in islands nucleation on semiconductor surfaces

Nunzio Motta; Pierre D. Szkutnik; Massimo Tomellini; ...

C. R. Phys (2006)


Three-dimensional stacking of self-assembled quantum dots in multilayer structures

Gunther Springholz

C. R. Phys (2005)