Comptes Rendus
Electron microscopy / Microscopie électronique
Measuring three-dimensional positions of atoms to the highest accuracy with electrons
[Utiliser un faisceau d'électrons pour mesurer dans l'espace tridimensionnel la position des atomes avec la plus grande précision]
Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 119-125.

Les progrès récents de la microscopie électronique à transmission (TEM) ont poussé la limite de résolution spatiale dans le plan de l'échantillon bien au-delà de 1 Å. Pour des structures cristallines parfaites, ceci permet de visualiser las colonnes atomiques selon plusieurs directions cristallographiques. Mesurer la position tridimensionnelle de chaque atome au sein d'un échantillon TEM, ce qui a parfois été considéré comme le saint Graal de la microscopie électronique, semble désormais accessible. Dans cette contribution, nous introduisons les approches récentes visant à atteindre cet objectif et présentons la nôtre, qui est particulièrement efficace en termes de dose requise. Elle repose sur une inversion directe des mécanismes de diffusion multiple au sein de l'échantillon et peut être adaptée à différents types de détection : TEM haute résolution, STEM confocal et ptychographie. Un de ses avantages spécifiques est de ne requérir qu'un nombre limité de projections. Un autre est de s'adapter très bien aux processus de diffusion multiple subis par des faisceaux incidents de plus faible énergie.

Recent developments in transmission electron microscopy (TEM) have pushed lateral spatial resolution to well below 1 Å. For selected perfect crystal structures, this allows atomic columns to be identified along several crystallographic orientations. Measuring the three-dimensional position of every atom within a TEM specimen, called by some the holy grail of electron microscopy, seems therefore within reach. In this paper, we will discuss recent approaches to this problem and present our own dose-efficient approach that is based on the direct inversion of multiple electron scattering within the sample and that can be applied to various coherent detection schemes, such as high-resolution TEM, confocal scanning TEM, or ptychography. One particular advantage of this approach is that data for only a very limited range of specimen tilt angles is required, and that it can handle the highly dynamical scattering associated with lower electron beam energy.

Publié le :
DOI : 10.1016/j.crhy.2013.10.004
Keywords: Inverse dynamical electron scattering, Compressed sensing, Atomic resolution tomography, Low-voltage electrons
Mot clés : Inversion directe de diffusion multiple des électrons, Acquisition comprimée, Détermination des structures atomiques en trois dimensions
Christoph T. Koch 1 ; Wouter Van den Broek 1

1 Institute for Experimental Physics, Ulm University, 89081 Ulm, Germany
@article{CRPHYS_2014__15_2-3_119_0,
     author = {Christoph T. Koch and Wouter Van den Broek},
     title = {Measuring three-dimensional positions of atoms to the highest accuracy with electrons},
     journal = {Comptes Rendus. Physique},
     pages = {119--125},
     publisher = {Elsevier},
     volume = {15},
     number = {2-3},
     year = {2014},
     doi = {10.1016/j.crhy.2013.10.004},
     language = {en},
}
TY  - JOUR
AU  - Christoph T. Koch
AU  - Wouter Van den Broek
TI  - Measuring three-dimensional positions of atoms to the highest accuracy with electrons
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 119
EP  - 125
VL  - 15
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.10.004
LA  - en
ID  - CRPHYS_2014__15_2-3_119_0
ER  - 
%0 Journal Article
%A Christoph T. Koch
%A Wouter Van den Broek
%T Measuring three-dimensional positions of atoms to the highest accuracy with electrons
%J Comptes Rendus. Physique
%D 2014
%P 119-125
%V 15
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2013.10.004
%G en
%F CRPHYS_2014__15_2-3_119_0
Christoph T. Koch; Wouter Van den Broek. Measuring three-dimensional positions of atoms to the highest accuracy with electrons. Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 119-125. doi : 10.1016/j.crhy.2013.10.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.10.004/

[1] R. Henderson Q. Rev. Biophys., 28 (1995), pp. 171-193

[2] A.V. Crewe; J. Wall; J. Langmore Science, 168 (1970), pp. 1338-1340

[3] P.D. Nellist; S.J. Pennycook Science, 274 (1996), pp. 413-415

[4] P. Voyles; D.A. Muller; J.L. Grazul; P.H. Citrin; H.-J.L. Gossmann Nature, 416 (2002), pp. 826-829

[5] J.C. Meyer; S. Kurasch; H.J. Park; V. Skakalova; D. Künzel; A. Groß; A. Chuvilin; G. Algara-Siller; S. Roth; T. Iwasaki; U. Starke; J.H. Smet; U. Kaiser Nat. Mater., 10 (2011), pp. 209-215

[6] W. Zhou; M.P. Oxley; A.R. Lupini; O.L. Krivanek; S.J. Pennycook; J.-C. Idrobo Microsc. Microanal., 18 (2012), pp. 1342-1354

[7] M. Haider; H. Rose; S. Uhlemann; E. Schwan; B. Kabius; K. Urban Ultramicroscopy, 75 (1998), pp. 53-60

[8] O.L. Krivanek; N. Dellby; A.J. Spence; R.A. Camps; L.M. Brown IOP Conf. Ser., 153 (1997), pp. 35-40

[9] C. Kisielowski; B. Freitag; M. Bischoff; H. van Lin; S. Lazar; G. Knippels; P. Tiemeijer; M. van der Stam; S. von Harrach; M. Stekelenburg; M. Haider; S. Uhlemann; H. Müller; P. Hartel; B. Kabius; D. Miller; I. Petrov; E.A. Olson; T. Donchev; E.A. Kenik; A.R. Lupini; J. Bentley; S.J. Pennycook; I.M. Anderson; A.M. Minor; A.K. Schmid; T. Duden; V. Radmilovic; Q.M. Ramasse; M. Watanabe; R. Erni; E.A. Stach; P. Denes; U. Dahmen Microsc. Microanal., 14 (2008), pp. 469-477

[10] P.K. Luther Electron Tomography, Three-Dimensional Imaging with the Transmission Electron Microscope (J. Frank, ed.), Plenum Press, New York, 1992

[11] T.F. Kelly; D.J. Larson Annu. Rev. Mater. Res., 42 (2012), pp. 1-31

[12] S. Van Aert; A.J. Den Dekker; V.A. den Bos; D. van Dyck Adv. Imaging Electron Phys., 130 (2004), pp. 1-164

[13] S. Van Aert; K.J. Batenburg; M.D. Rossell; R. Erni; G. Van Tendeloo Nature, 470 (2011), pp. 374-377

[14] P.D. Nellist; P. Wang Annu. Rev. Mater. Res., 42 (2012), pp. 125-143

[15] K. van Benthem; A.R. Lupini; M. Kim; H. Suck Baik; S. Doh; J.-H. Lee; M.P. Oxley; S.D. Findley; L.J. Allen; J.T. Tuck; S.J. Pennycook Appl. Phys. Lett., 87 (2005), p. 034104

[16] W. Van den Broek; S. Van Aert; D. Van Dyck Ultramicroscopy, 110 (2010), pp. 548-554

[17] B. Goris; S. Bals; W. Van den Broek; E. Carbó-Argibay; S. Gomez-Grana; L.M. Liz-Marzan; G. Van Tendeloo Nat. Mater., 11 (2012), pp. 930-935

[18] C.-C. Chen; C. Zhu; E.R. White; C.-Y. Chiu; M.C. Scott; B.C. Regan; L.D. Marks; Y. Huang; J. Miao Nature, 496 (2013), pp. 74-79

[19] W. Van den Broek; S. Van Aert; D. Van Dyck Ultramicroscopy, 109 (2009), pp. 1485-1490

[20] W. Van den Broek; A. Rosenauer; B. Goris; G. Martinez; S. Bals; S. Van Aert; D. Van Dyck Ultramicroscopy, 116 (2012), pp. 8-12

[21] G. Mollenstedt; H. Wahl Naturwissenschaften, 55 (1968), pp. 340-341

[22] H. Lichte; P. Formanek; A. Lenk; M. Linck; C. Matzeck; M. Lehmann; P. Simon Annu. Rev. Mater. Res., 37 (2007), pp. 539-588

[23] E.J. Kirkland Ultramicroscopy, 15 (1984), pp. 151-172

[24] A.I. Kirkland; W.O. Saxton; K.L. Chau; K. Tsuno; M. Kawasaki Ultramicroscopy, 57 (1995), pp. 355-374

[25] W.M.J. Coene; A. Thust; M. Op de Beek; D. Van Dyck Ultramicroscopy, 64 (1996), pp. 109-135

[26] T. Kawasaki; Y. Takai; T. Ikuta; R. Shimizu Ultramicroscopy, 90 (2001), pp. 47-59

[27] L.J. Allen; M.P. Oxley Opt. Commun., 199 (2001), pp. 65-75

[28] T. Kawasaki; Y. Takai Surf. Interface Anal., 35 (2003), pp. 51-54

[29] W.-K. Hsieh; F.-R. Chen; J.-J. Kai; A.I. Kirkland Ultramicroscopy, 98 (2004), pp. 99-114

[30] L.J. Allen; W. McBride; N.L. O'Leary; M.P. Oxley Ultramicroscopy, 100 (2004), pp. 91-104

[31] C.T. Koch Ultramicroscopy, 108 (2008), pp. 141-150

[32] C.T. Koch; A. Lubk Ultramicroscopy, 110 (2010), pp. 460-471

[33] P. Thibault; V. Elser Annu. Rev. Condens. Matter Phys., 1 (2010), pp. 237-255

[34] K.A. Nugent Adv. Phys., 59 (2010), pp. 1-99

[35] W. Hoppe Ultramicroscopy, 10 (1982), pp. 187-198

[36] H.M.L. Faulkner; J.M. Rodenburg Phys. Rev. Lett., 92 (2004), p. 023903

[37] C.B. Boothroyd; R.E. Dunin-Borkowski Ultramicroscopy, 98 (2004), pp. 115-133

[38] D. Muller; B. Edwards; E. Kirkland; J. Silcox Ultramicroscopy, 86 (2001), pp. 371-380

[39] J.M. LeBeau; S.D. Findlay; L.J. Allen; S. Stemmer Phys. Rev. Lett., 100 (2008), p. 206101

[40] G. Möbus; T. Gemming; P. Gumbsch Acta Crystallogr. A, 54 (1998), pp. 83-90

[41] C.T. Koch Determination of core structure and point defect density along dislocations, Arizona State University, 2002 (PhD thesis)

[42] D. Van Dyck; J.R. Jinschek; F.-R. Chen Nature, 486 (2012), pp. 243-246

[43] A. Wang; S. Van Aert; P. Goos; D. Van Dyck Ultramicroscopy, 114 (2012), pp. 20-30

[44] G. Oszlanyi; A. Suto Acta Crystallogr. A, 60 (2004), pp. 134-141

[45] W. Van den Broek; C.T. Koch Phys. Rev. Lett., 109 (2012), p. 245502

[46] W. Van den Broek; C.T. Koch Phys. Rev. B, 87 (2013), p. 184108

[47] W. Van den Broek; S. Van Aert; D. Van Dyck Microsc. Microanal., 18 (2012), pp. 336-342

[48] J. Romberg IEEE Signal Process. Mag., 25 (2008), pp. 14-20

[49] R. Baraniuk IEEE Signal Process. Mag., 24 (2007), pp. 118-121

[50] E.J. Candés; J.K. Romberg; T. Tao Commun. Pure Appl. Math., 59 (2006), p. 1207

[51] E. Candes; J. Romberg Inverse Probl., 23 (2007), pp. 969-985

[52] E. Candes; J. Romberg; T. Tao IEEE Trans. Inf. Theory, 52 (2006), pp. 489-509

[53] B. Goris; W. Van den Broek; K. Batenburg; H.H. Mezerji; S. Bals Ultramicroscopy, 113 (2012), pp. 120-130

[54] R. Leary; Z. Saghi; P.A. Midgley; D.J. Holland Ultramicroscopy, 131 (2013), pp. 70-91

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Seeing and measuring in 3D with electrons

Sara Bals; Bart Goris; Thomas Altantzis; ...

C. R. Phys (2014)


Using electron beams to investigate catalytic materials

Bingsen Zhang; Dang Sheng Su

C. R. Phys (2014)


Using electron beams to investigate carbonaceous materials

Clemens Mangler; Jannik C. Meyer

C. R. Phys (2014)