The impressive power-law decay of the energy spectrum of cosmic rays over more than thirty orders of magnitude in intensity and for energies ranging over eleven decades between and is actually dotted with small irregularities. These irregularities are highly valuable for uncovering and understanding the modes of production and propagation of cosmic rays. They manifest themselves through changes in the spectral index characterising the observed power laws. One of these irregularities, known as the ankle, is subject to conflicting interpretations for many years. If contemporary observations characterising it have shed new lights, they are still far from being able to deliver all the story. The purpose of this contribution is to give an overview of the physics of cosmic rays in the energy range where the transition between Galactic and extragalactic cosmic rays is expected to occur, and to deliver several lines of thought about the origin of the ankle.
L'impressionnante décroissance en loi de puissance du spectre en énergie des rayons cosmiques sur plus de trente ordres de grandeur en intensité et sur une échelle d'énergie balayant onze décades entre et est en fait semée de petites irrégularités riches d'enseignements quant aux modes de production et de propagation des rayons cosmiques. Ces irrégularités se manifestent par des changements de l'indice spectral caractérisant les lois de puissance observées. L'une de ces irrégularités, connue sous le nom de cheville, fait l'objet d'interprétations antagonistes depuis bon nombre d'années. Si les observations contemporaines la caractérisant ont permis de mieux la cerner, elles sont néanmoins encore loin de pouvoir en livrer tous les ressorts. L'objet de cette contribution est de donner un aperçu de la physique des rayons cosmiques dans la gamme d'énergie propice à une transition entre rayons cosmiques d'origine galactique et extragalactique, et de livrer plusieurs pistes de réflexion sur l'origine de la cheville.
Mots-clés : Rayons cosmiques, Genou de fer, Cheville, Transition galactique/extragalactique
Olivier Deligny 1
@article{CRPHYS_2014__15_4_367_0,
author = {Olivier Deligny},
title = {Cosmic rays around $ {10}^{18}\text{eV}$: {Implications} of contemporary measurements on the origin of the ankle feature},
journal = {Comptes Rendus. Physique},
pages = {367--375},
year = {2014},
publisher = {Elsevier},
volume = {15},
number = {4},
doi = {10.1016/j.crhy.2014.02.009},
language = {en},
}
TY - JOUR
AU - Olivier Deligny
TI - Cosmic rays around $ {10}^{18}\text{eV}$: Implications of contemporary measurements on the origin of the ankle feature
JO - Comptes Rendus. Physique
PY - 2014
SP - 367
EP - 375
VL - 15
IS - 4
PB - Elsevier
DO - 10.1016/j.crhy.2014.02.009
LA - en
ID - CRPHYS_2014__15_4_367_0
ER -
Olivier Deligny. Cosmic rays around $ {10}^{18}\text{eV}$: Implications of contemporary measurements on the origin of the ankle feature. Comptes Rendus. Physique, Ultra-high-energy cosmic rays: From the ankle to the tip of the spectrum, Volume 15 (2014) no. 4, pp. 367-375. doi: 10.1016/j.crhy.2014.02.009
[1] Proceedings of the 8th ICRC, Jaipur, vol. 4, 1963, p. 77
[2] J. Phys. G, 17 (1991), p. 733
[3] et al. J. Phys. G, 18 (1992), p. 423
[4] Phys. Rev. Lett., 71 (1993), p. 3401
[5] Phys. Lett. B, 685 (2010), p. 239
[6] Astrophys. J. Lett., 768 (2013), p. L1
[7] Phys. Lett., 24A (1967), p. 677
[8] Phys. Rev. D, 1 (1970), p. 1596
[9] Phys. Rev. D, 74 (2006), p. 043005
[10] Astropart. Phys., 21 (2004), p. 617625
[11] et al. Astropart. Phys., 17 (2002), p. 125
[12] Nucl. Phys. B, Proc. Suppl., 136 (2004), p. 139
[13] Phys. Rev. D, 72 (2005), p. 081301
[14] J. Phys. G, 31 (2005), p. 255
[15] Astropart. Phys., 27 (2007), p. 61
[16] Proc. Natl. Acad. Sci. USA, 20 (1934), p. 259
[17] J. R. Astron. Soc., 182 (1978), p. 443
[18] J. R. Astron. Soc., 182 (1978), p. 147
[19] Phys. Rep., 154 (1987), p. 1
[20] Astrophys. J. Lett., 661 (2007), p. L175
[21] Rio de Janeiro, Brazil (2013) | arXiv
[22] Merida, Mexico (2007)
[23] Astrophys. J. Lett., 762 (2013), p. L13
[24] Astrophys. J. Suppl. Ser., 203 (2012), p. 34
[25] Astropart. Phys., 34 (2011), p. 627
[26] et al. J. Cosmol. Astropart. Phys., 1207 (2012), p. 031
[27] Astrophys. J., 760 (2012), p. 48
[28] Phys. Rev. D, 87 (2013), p. 081101
[29] EPJ Web Conf., 53 (2013), p. 01006
[30] Phys. Rev. Lett., 107 (2011), p. 171104
[31] et al. Nucl. Instrum. Methods A, 692 (2012), p. 98
[32] Nucl. Instrum. Methods Phys. Res., Sect. A, 513 (2003), p. 490
[33] Astropart. Phys., 24 (2005), p. 1
[34] et al. Astropart. Phys., 21 (2004), p. 583
[35] et al. Astropart. Phys., 20 (2004), p. 641
[36] Phys. Rev. Lett., 104 (2010), p. 091101
[37] Phys. Rev. Lett., 104 (2010), p. 161101
[38] Proceedings of the APS Meeting, 2011 | arXiv
[39] et al. Astropart. Phys., 36 (2012), p. 31
[40] J. Cosmol. Astropart. Phys., 01 (2011), p. 010
[41] Phys. Rev. Lett., 16 (1966), p. 748
[42] Pisma Zh. Experim. Theor. Phys., 4 (1966), p. 114
[43] C. R. Physique, 15 (2014) (in this issue)
[44] Rio de Janeiro, Brazil (2013) | arXiv
[45] Phys. Rev. D, 71 (2005), p. 083007
[46] J. Cosmol. Astropart. Phys., 1302 (2013), p. 026
[47] Astropart. Phys. (2014), submitted for publication | arXiv
[48] et al. J. Cosmol. Astropart. Phys., 0810 (2008), p. 033
[49] Astropart. Phys., 33 (2010), p. 151
[50] the KASCADE-Grande Collaboration, Rio de Janeiro, Brazil (2013)
[51] et al. J. Phys. G, 4 (1978), p. 133
[52] J. Cosmol. Astropart. Phys., 1201 (2012), p. 011
[53] et al. Astron. Astrophys., 268 (1993), p. 726
[54] J. Cosmol. Astropart. Phys., 0305 (2003), p. 003
[55] Astrophys. J., 742 (2011), p. 114
[56] Astrophys. J., 781 (2013), p. 47
Cited by Sources:
Comments - Policy
