Comptes Rendus
Evaluation of Reynolds stress MHD turbulence models using decaying homogeneous turbulence
Comptes Rendus. Physique, Volume 15 (2014) no. 6, pp. 509-516.

Direct numerical simulation databases and theoretical analysis for decaying homogeneous turbulent flow in a conducting fluid subjected to an imposed magnetic field are investigated to evaluate the second-order models proposed by Widlund et al. and Kenjeres et al. The case of very small magnetic Reynolds numbers (Rem1) is considered in the present work. This case corresponds to the quasi-static approximation, which is well suited for most industrial flows involving liquid metals. The results obtained from our calculations show the performance of the model of Widlund et al. in predicting the Lorentz force effects compared with the model of Kenjeres et al.

Des données issues de simulations numériques directes et d'analyses théoriques relatives à un écoulement turbulent homogène en décroissance libre dans un fluide conducteur sujet à un champ magnétique sont utilisées pour évaluer les modèles de turbulence MHD développés par Widlund et al. et Kenjeres et al. Nous considérons, dans la présente étude, le cas où le nombre de Reynolds magnétique est faible. Ce cas correspond à l'approximation quasi stationnaire. Cette dernière est la plus recommandée dans l'étude des écoulements turbulents industriels. Les résultats de nos calculs montrent la capacité significative du modèle de Widlund et al. à reproduire les effets de la force de Lorentz comparé au modèle de Kenjeres et al.

Published online:
DOI: 10.1016/j.crhy.2014.05.004
Keywords: Decaying homogeneous turbulence, MHD turbulence, Low magnetic Reynolds number
Mot clés : Écoulement turbulent en décroissance libre, Turbulence MHD, Nombre de Reynolds magnétique faible

Hamed Marzougui 1; Taieb Lili 1

1 Département de physique, faculté des sciences de Tunis, campus universitaire El Manar, 1060 Tunis, Tunisia
@article{CRPHYS_2014__15_6_509_0,
     author = {Hamed Marzougui and Taieb Lili},
     title = {Evaluation of {Reynolds} stress {MHD} turbulence models using decaying homogeneous turbulence},
     journal = {Comptes Rendus. Physique},
     pages = {509--516},
     publisher = {Elsevier},
     volume = {15},
     number = {6},
     year = {2014},
     doi = {10.1016/j.crhy.2014.05.004},
     language = {en},
}
TY  - JOUR
AU  - Hamed Marzougui
AU  - Taieb Lili
TI  - Evaluation of Reynolds stress MHD turbulence models using decaying homogeneous turbulence
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 509
EP  - 516
VL  - 15
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.05.004
LA  - en
ID  - CRPHYS_2014__15_6_509_0
ER  - 
%0 Journal Article
%A Hamed Marzougui
%A Taieb Lili
%T Evaluation of Reynolds stress MHD turbulence models using decaying homogeneous turbulence
%J Comptes Rendus. Physique
%D 2014
%P 509-516
%V 15
%N 6
%I Elsevier
%R 10.1016/j.crhy.2014.05.004
%G en
%F CRPHYS_2014__15_6_509_0
Hamed Marzougui; Taieb Lili. Evaluation of Reynolds stress MHD turbulence models using decaying homogeneous turbulence. Comptes Rendus. Physique, Volume 15 (2014) no. 6, pp. 509-516. doi : 10.1016/j.crhy.2014.05.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.05.004/

[1] A. Vorobev; O. Zikanov; A. Davidson; B. Knaepen Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number, Phys. Fluids, Volume 17 (2005), p. 125105

[2] K. Moffat On the suppression of turbulence by a uniform magnetic field, J. Fluid Mech., Volume 28 (1967), p. 571

[3] A. Davidson Magnetohydrodynamics in materials processing, Annu. Rev. Fluid Mech., Volume 31 (1999), p. 273

[4] U. Shumann Numerical simulation of the transition from three-to-two-dimensional turbulence under a uniform magnetic field, J. Fluid Mech., Volume 74 (1976), p. 31

[5] O. Zikanov; A. Thess Direct numerical simulation as a tool for understanding MHD liquid metal turbulence, Appl. Math. Model., Volume 28 (2004), p. 1

[6] A. Votsish; B. Kolesnikov Investigation of transition from three-dimensional turbulence to two-dimensional under a magnetic field, Magnetohydrodynamics, Volume 3 (1976), p. 141

[7] A. Alemany; R. Moreau; L. Sulem; U. Frisch Influence of external magnetic field on homogeneous MHD turbulence, J. Mech., Volume 18 (1979), p. 280

[8] S.C. Kassinos; W.C. Reynolds Structure-based modeling for homogeneous MHD turbulence, Center of Turbulence Research, Annu. Res. Briefs, 1999

[9] J. Sommeria; R. Moreau Why, how and when MHD turbulence becomes two-dimensional, J. Fluid Mech., Volume 118 (1982), p. 507

[10] O. Widlund; S. Zaharai; H. Bark Development of a Reynolds stress closure for modeling of homogeneous MHD turbulence, Phys. Fluids, Volume 10 (1998), p. 1987

[11] S. Kenjeres; K. Hanjalic; D. Bal A direct–numerical–simulation-based second-order–moment closure for turbulent magnetohydrodynamic flows, Phys. Fluids, Volume 16 (2004), p. 1229

[12] M. Kinet; P. Burattini; D. Carati; B. Kanaepen Decay of passive scalar fluctuations in homogeneous magnetohydrodynamic turbulence, Phys. Fluids, Volume 20 (2008), p. 075105

[13] A. Davidson Turbulence: An Introduction for Scientists and Engineers, Oxford University Press, 2004

[14] A. Davidson On the decay of Saffman turbulence subject to rotation, stratification or an imposed magnetic field, J. Fluid Mech., Volume 663 (2010), p. 268

[15] B. Gatski; G. Speziale On explicit algebraic stress models for complex turbulent flows, J. Fluid Mech., Volume 254 (1993), p. 59

[16] H. Noguchi, Y. Ohtsubo, N. Kasagi, DNS database of turbulence heat transfer, ftp.thtlab.tu–tokyo.ac.jp/dns, 1998.

[17] N. Okamoto; A. Davidson; Y. Kaneda The decay of magnetic Reynolds number turbulence in an imposed magnetic field, J. Fluid Mech., Volume 651 (2009), p. 295

Cited by Sources:

Comments - Politique