Since the first atom interferometry experiments in 1991, measurements of rotation through the Sagnac effect in open-area atom interferometers have been investigated. These studies have demonstrated very high sensitivity that can compete with state-of-the-art optical Sagnac interferometers. Since the early 2000s, these developments have been motivated by possible applications in inertial guidance and geophysics. Most matter-wave interferometers that have been investigated since then are based on two-photon Raman transitions for the manipulation of atomic wave packets. Results from the two most studied configurations, a space-domain interferometer with atomic beams and a time-domain interferometer with cold atoms, are presented and compared. Finally, the latest generation of cold atom interferometers and their preliminary results are presented.
Depuis les premières expériences d'interférométrie atomique en 1991, les mesures de rotation basées sur l'effet Sagnac dans des interféromètres possédant une aire physique ont été envisagées. Les études expérimentales ont montré de très bons niveaux de sensibilité rivalisant avec l'état de l'art des interféromètres Sagnac dans le domaine optique. Depuis le début des années 2000, de tels développements ont été motivés par de possibles applications dans les domaines de la navigation inertielle et de la géophysique. La plupart des interféromètres à ondes de matière qui ont été étudiés depuis sont basés sur des transitions Raman à deux photons pour la manipulation des paquets d'ondes atomiques. Nous présentons et comparons ici les résultats portant sur les deux configurations les plus étudiées : un interféromètre dans le domaine spatial utilisant un jet atomique et un interféromètre dans le domaine temporel utilisant des atomes froids. Finalement, la dernière génération d'interféromètres à atomes froids et leurs résultats préliminaires sont présentés, ainsi que les perspectives d'évolution du domaine.
Mots-clés : Interféromètre Sagnac à ondes de matière, Interaction lumière-matière, Transitions Raman stimulées, Atomes froids, Mesures de précision, Navigation inertielle, Géophysique
Brynle Barrett 1; Rémy Geiger 2; Indranil Dutta 2; Matthieu Meunier 2; Benjamin Canuel 1; Alexandre Gauguet 3; Philippe Bouyer 1; Arnaud Landragin 2
@article{CRPHYS_2014__15_10_875_0, author = {Brynle Barrett and R\'emy Geiger and Indranil Dutta and Matthieu Meunier and Benjamin Canuel and Alexandre Gauguet and Philippe Bouyer and Arnaud Landragin}, title = {The {Sagnac} effect: 20 years of development in matter-wave interferometry}, journal = {Comptes Rendus. Physique}, pages = {875--883}, publisher = {Elsevier}, volume = {15}, number = {10}, year = {2014}, doi = {10.1016/j.crhy.2014.10.009}, language = {en}, }
TY - JOUR AU - Brynle Barrett AU - Rémy Geiger AU - Indranil Dutta AU - Matthieu Meunier AU - Benjamin Canuel AU - Alexandre Gauguet AU - Philippe Bouyer AU - Arnaud Landragin TI - The Sagnac effect: 20 years of development in matter-wave interferometry JO - Comptes Rendus. Physique PY - 2014 SP - 875 EP - 883 VL - 15 IS - 10 PB - Elsevier DO - 10.1016/j.crhy.2014.10.009 LA - en ID - CRPHYS_2014__15_10_875_0 ER -
%0 Journal Article %A Brynle Barrett %A Rémy Geiger %A Indranil Dutta %A Matthieu Meunier %A Benjamin Canuel %A Alexandre Gauguet %A Philippe Bouyer %A Arnaud Landragin %T The Sagnac effect: 20 years of development in matter-wave interferometry %J Comptes Rendus. Physique %D 2014 %P 875-883 %V 15 %N 10 %I Elsevier %R 10.1016/j.crhy.2014.10.009 %G en %F CRPHYS_2014__15_10_875_0
Brynle Barrett; Rémy Geiger; Indranil Dutta; Matthieu Meunier; Benjamin Canuel; Alexandre Gauguet; Philippe Bouyer; Arnaud Landragin. The Sagnac effect: 20 years of development in matter-wave interferometry. Comptes Rendus. Physique, The Sagnac effect: 100 years later / L'effet Sagnac : 100 ans après, Volume 15 (2014) no. 10, pp. 875-883. doi : 10.1016/j.crhy.2014.10.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.10.009/
[1] Modern Inertial Technology, Springer, New York, 1998
[2] Broad-band observations of earthquake-induced rotational ground motions, Geophys. J. Int., Volume 168 (2007), p. 182 http://gji.oxfordjournals.org/content/168/1/182.short | DOI
[3] The confrontation between general relativity and experiment, Living Rev. Relativ., Volume 9 (2006), p. 3 http://www.livingreviews.org/lrr-2006-3 | DOI
[4] L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interféromètre en rotation uniforme, C.R. Acad. Sci., Volume 157 (1913), p. 708
[5] “Sagnac” effect: a century of Earth-rotated interferometers, Am. J. Phys., Volume 62 (1994), p. 975 http://scitation.aip.org/content/aapt/journal/ajp/62/11/10.1119/1.17656 | DOI
[6] Theoretical approaches to laser spectroscopy in the presence of gravitational fields, J. Phys. Lett., Volume 44 (1983), p. 983 http://jphyslet.journaldephysique.org/articles/jphyslet/abs/1983/24/jphyslet_1983__44_24_983_0/jphyslet_1983__44_24_983_0.html | DOI
[7] Interference of atoms in separated optical fields, J. Opt. Soc. Am. B, Volume 2 (1985), p. 1791 http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-2-11-1791 | DOI
[8] Ultra high sensitivity accelerometers and gyroscopes using neutral atom matter wave interferometry, Phys. B C, Volume 151 (1988), p. 262 http://www.sciencedirect.com/science/article/pii/0378436388901763 | DOI
[9] Atom interferometry with internal state labelling, Phys. Lett. A, Volume 140 (1989), p. 10 http://www.sciencedirect.com/science/article/pii/0375960189905379 | DOI
[10] Young's double-slit experiment with atoms: a simple atom interferometer, Phys. Rev. Lett., Volume 66 (1991), p. 2689 http://link.aps.org/doi/10.1103/PhysRevLett.66.2689 | DOI
[11] An interferometer for atoms, Phys. Rev. Lett., Volume 66 (1991), p. 2693 http://link.aps.org/doi/10.1103/PhysRevLett.66.2693 | DOI
[12] Atomic interferometry using stimulated Raman transitions, Phys. Rev. Lett., Volume 67 (1991), p. 181 http://link.aps.org/doi/10.1103/PhysRevLett.67.181 | DOI
[13] Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer, Phys. Rev. Lett., Volume 67 (1991), p. 177 http://link.aps.org/doi/10.1103/PhysRevLett.67.177 | DOI
[14] Optics and interferometry with atoms and molecules, Rev. Mod. Phys., Volume 81 (2009), p. 1051 http://link.aps.org/doi/10.1103/RevModPhys.81.1051 | DOI
[15] Rotation sensing with an atom interferometer, Phys. Rev. Lett., Volume 78 (1997), p. 760 http://link.aps.org/doi/10.1103/PhysRevLett.78.760 | DOI
[16] Precision rotation measurements with an atom interferometer gyroscope, Phys. Rev. Lett., Volume 78 (1997), p. 2046 http://link.aps.org/doi/10.1103/PhysRevLett.78.2046 | DOI
[17] Inertial sensing with classical atomic beams, Phys. Rev. A, Volume 54 (1996), p. 3165 http://link.aps.org/doi/10.1103/PhysRevA.54.3165 | DOI
[18] The Feynman path integral approach to atomic interferometry. A tutorial, J. Phys. II, Volume 4 (1994), p. 1999 http://jp2.journaldephysique.org/articles/jp2/abs/1994/11/jp2v4p1999/jp2v4p1999.html | DOI
[19] Theoretical tools for atom optics and interferometry, C.R. Acad. Sci., Ser. IV, Volume 2 (2001), p. 509
[20] Atomic clocks and inertial sensors, Metrologia, Volume 39 (2002), p. 435 http://iopscience.iop.org/0026-1394/39/5/5/pdf/0026-1394_39_5_5.pdf | DOI
[21] Exact phase shifts for atom interferometry, Phys. Lett. A, Volume 306 (2003), p. 277 http://www.sciencedirect.com/science/article/pii/S0375960102016250 | DOI
[22] Rotation sensing with a dual atom-interferometer Sagnac gyroscope, Class. Quantum Gravity, Volume 17 (2000), p. 2385 http://iopscience.iop.org/0264-9381/17/12/311/ | DOI
[23] Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope, Phys. Rev. Lett., Volume 97 (2006), p. 240801 http://link.aps.org/doi/10.1103/PhysRevLett.97.240801 | DOI
[24] Six-axis inertial sensor using cold-atom interferometry, Phys. Rev. Lett., Volume 97 (2006), p. 010402 http://link.aps.org/doi/10.1103/PhysRevLett.97.010402 | DOI
[25] Characterization and limits of a cold-atom Sagnac interferometer, Phys. Rev. A, Volume 80 (2009), p. 063604 http://link.aps.org/doi/10.1103/PhysRevA.80.063604 | DOI
[26] Dévelopement d'un gyromètre à atomes froids de haute sensibilité fondé sur une géométrie repliée, Université Pierre-et-Marie-Curie, Paris-6, 2010 (Ph.D. thesis)
[27] Absolute geodetic rotation measurement using atom interferometry, Phys. Rev. Lett., Volume 107 (2011), p. 133001 http://link.aps.org/doi/10.1103/PhysRevLett.107.133001 | DOI
[28] Self-alignment of a compact large-area atomic Sagnac interferometer, New J. Phys., Volume 14 (2012), p. 015002 http://iopscience.iop.org/1367-2630/14/1/015002 | DOI
[29] Étude d'un gyromèetre à ondes de matière de très grande aire, Université Pierre-et-Marie-Curie, Paris-6, 2013 (Ph.D. thesis)
[30] Large area Sagnac atom interferometer with robust phase read out, C. R. Physique, Volume 15 (2014), pp. 884-897 (in this issue)
[31] Hybridizing matter-wave and classical accelerometers, Appl. Phys. Lett., Volume 105 (2014), p. 144102 http://scitation.aip.org/content/aip/journal/apl/105/14/10.1063/1.4897358 | DOI
[32] How to detect the chandler and the annual wobble of the earth with a large ring laser gyroscope, Phys. Rev. Lett., Volume 107 (2011), p. 173904 http://link.aps.org/doi/10.1103/PhysRevLett.107.173904 | DOI
[33] Dual-axis, high data-rate atom interferometer via cold ensemble exchange, 2014 | arXiv
[34] Dévelopement d'un accéléromètre atomique compact pour la gravimétrie de terrain et la navigation inertielle, Université Pierre-et-Marie-Curie, Paris-6, 2014 (Ph.D. thesis)
[35] M. Meunier, I. Dutta, R. Geiger, C. Guerlin, C. Garrido-Alzar, A. Landragin, Stability enhancement by joint phase measurements in a single cold atomic fountain, Aug. 2014, submitted for publication.
[36] Demonstration of an area-enclosing guided-atom interferometer for rotation sensing, Phys. Rev. Lett., Volume 99 (2007), p. 173201 http://link.aps.org/doi/10.1103/PhysRevLett.99.173201 | DOI
[37] Towards high sensitivity rotation sensing using an atom chip, Research in Optical Sciences, OSA Technical Digest (Optical Society of America 2012), JT2A.10, 2012 http://www.opticsinfobase.org/abstract.cfm?URI=HILAS-2012-JT2A.10 | DOI
Cited by Sources:
Comments - Policy