[Vers un gyrolaser à état solide]
Nous décrivons dans cet article nos récents progrès vers la réalisation d'un gyrolaser à état solide. Dans ce dispositif, le problème de la compétition entre modes est résolu par un contrôle actif des pertes différentielles, et les effets non linéaires sont fortement atténués par la mise en vibration du milieu à gain. La dynamique d'un tel système est significativement différente de celle d'un gyrolaser à hélium–néon classique, en particulier à cause des résonances paramétriques qui surviennent lorsque la fréquence Sagnac est un multiple entier de la fréquence de vibration du cristal. Nous décrivons les principaux résultats expérimentaux et théoriques obtenus jusqu'ici et discutons les perspectives d'applications pratiques à court et moyen termes.
In this paper, we report our recent progress towards a solid-state ring laser gyroscope (RLG), where mode competition is circumvented by active control of differential losses, and nonlinear effects are mitigated by longitudinal vibration of the gain medium. The resulting dynamics is significantly different from that of a classical helium–neon RLG, owing in particular to parametric resonances that occur when the Sagnac frequency is an integer multiple of the crystal vibration frequency. We describe the main experimental and theoretical results obtained so far, and the prospects of practical applications in the near future.
Noad El Badaoui 1, 2 ; Bertrand Morbieu 1 ; Philippe Martin 2 ; Pierre Rouchon 2 ; Jean-Paul Pocholle 3 ; François Gutty 3 ; Gilles Feugnet 3 ; Sylvain Schwartz 3
@article{CRPHYS_2014__15_10_841_0, author = {Noad El Badaoui and Bertrand Morbieu and Philippe Martin and Pierre Rouchon and Jean-Paul Pocholle and Fran\c{c}ois Gutty and Gilles Feugnet and Sylvain Schwartz}, title = {Towards a solid-state ring laser gyroscope}, journal = {Comptes Rendus. Physique}, pages = {841--850}, publisher = {Elsevier}, volume = {15}, number = {10}, year = {2014}, doi = {10.1016/j.crhy.2014.10.008}, language = {en}, }
TY - JOUR AU - Noad El Badaoui AU - Bertrand Morbieu AU - Philippe Martin AU - Pierre Rouchon AU - Jean-Paul Pocholle AU - François Gutty AU - Gilles Feugnet AU - Sylvain Schwartz TI - Towards a solid-state ring laser gyroscope JO - Comptes Rendus. Physique PY - 2014 SP - 841 EP - 850 VL - 15 IS - 10 PB - Elsevier DO - 10.1016/j.crhy.2014.10.008 LA - en ID - CRPHYS_2014__15_10_841_0 ER -
%0 Journal Article %A Noad El Badaoui %A Bertrand Morbieu %A Philippe Martin %A Pierre Rouchon %A Jean-Paul Pocholle %A François Gutty %A Gilles Feugnet %A Sylvain Schwartz %T Towards a solid-state ring laser gyroscope %J Comptes Rendus. Physique %D 2014 %P 841-850 %V 15 %N 10 %I Elsevier %R 10.1016/j.crhy.2014.10.008 %G en %F CRPHYS_2014__15_10_841_0
Noad El Badaoui; Bertrand Morbieu; Philippe Martin; Pierre Rouchon; Jean-Paul Pocholle; François Gutty; Gilles Feugnet; Sylvain Schwartz. Towards a solid-state ring laser gyroscope. Comptes Rendus. Physique, Volume 15 (2014) no. 10, pp. 841-850. doi : 10.1016/j.crhy.2014.10.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.10.008/
[1] L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interféromètre en rotation uniforme, C. R. Acad. Sci. Paris, Volume 95 (1913), p. 708
[2] Sur la preuve de la réalité de l'éther lumineux par l'expérience de l'interférographe tournant, C. R. Acad. Sci. Paris, Volume 95 (1913), p. 1410
[3] Rotation rate sensing with traveling-wave ring lasers, Appl. Phys. Lett., Volume 2 (1963) no. 3, p. 67
[4] Photonic technologies for angular velocity sensing, Adv. Opt. Photonics, Volume 2 (2010) no. 3, p. 370
[5] Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro, J. Lightwave Technol., Volume 29 (2011) no. 1, p. 85
[6] Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique, Opt. Express, Volume 19 (2011) no. 5, p. 4632
[7] Ultrahigh sensitivity of slow-light gyroscope, Phys. Rev. A, Volume 62 (2000), p. 055801
[8] Optical gyroscope with whispering gallery mode optical cavities, Opt. Commun., Volume 233 (2004) no. 1, p. 107
[9] Rotating photonic crystals: a medium for compact optical gyroscopes, Phys. Rev. E, Volume 71 (2005) no. 5, p. 056621
[10] Sagnac effect in coupled-resonator slow-light waveguide structures, Phys. Rev. Lett., Volume 96 (2006), p. 053901
[11] Rotation-induced superstructure in slow-light waveguides with mode-degeneracy: optical gyroscopes with exponential sensitivity, J. Opt. Soc. Am. B, Volume 24 (2007) no. 5, p. 1216
[12] Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light, Phys. Rev. A, Volume 75 (2007), p. 053807
[13] Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors, J. Mod. Opt., Volume 54 (2007) no. 16–17, p. 2425
[14] Some considerations on slow-and fast-light gyros, Opt. Eng., Volume 53 (2014) no. 10, p. 102706
[15] Air-core photonic-bandgap fiber-optic gyroscope, J. Lightwave Technol., Volume 24 (2006) no. 8, p. 3169
[16] Hollow core fiber optic ring resonator for rotation sensing, Optical Fiber Sensors, Optical Society of America, 2006, p. ME6
[17] Resonant fiber optic gyroscope using an air-core fiber, J. Lightwave Technol., Volume 30 (2012) no. 7, p. 931
[18] How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope, Phys. Rev. Lett., Volume 107 (2011) no. 17, p. 173904
[19] et al. Measuring gravitomagnetic effects by a multi-ring-laser gyroscope, Phys. Rev. D, Volume 84 (2011) no. 12, p. 122002
[20] Long-term frequency stabilization of a ring laser gyroscope, Opt. Lett., Volume 37 (2012) no. 11, p. 1925
[21] Large-area fiber-optic gyroscope on a multiplexed fiber network, Opt. Lett., Volume 38 (2013) no. 7, p. 1092
[22] The ring laser gyro, Rev. Mod. Phys., Volume 57 (1985) no. 1, p. 61
[23] The Fiber-Optic Gyroscope, Artech House, 1993
[24] Passive versus active interferometers: why cavity losses make them equivalent, Phys. Rev. A, Volume 35 (1987) no. 6, p. 2518
[25] Thermally induced nonreciprocity in the fiber-optic interferometer, Appl. Opt., Volume 19 (1980) no. 5, p. 654
[26] The laser gyro, IEEE Spectr., Volume 4 (1967) no. 10, p. 44
[27] Fundamentals of the ring laser gyro, Optical Gyros and Their Application, NATO Research and Technology Organization, 1999 (Ch. 3)
[28] Use of a feedback circuit for the improvement of the characteristics of a solid-state ring laser, Sov. J. Quantum Electron., Volume 14 (1984) no. 1, p. 117
[29] Use of a feedback loop for the stabilization of a beat regime in a solid-state ring laser, Sov. J. Quantum Electron., Volume 16 (1986) no. 1, p. 58
[30] Mode-coupling control in resonant devices: application to solid-state ring lasers, Phys. Rev. Lett., Volume 97 (2006), p. 093902
[31] S. Schwartz, F. Gutty, J.-P. Pocholle, G. Feugnet, Solid-state ring laser gyro with a mechanically activated gain medium, US Patent 7,589,841.
[32] Solid-state ring laser gyro behaving like its helium–neon counterpart at low rotation rates, Opt. Lett., Volume 34 (2009) no. 24, p. 3884
[33] Electro-optic elimination of spatial hole burning in lasers, Appl. Phys. Lett., Volume 17 (1970) no. 12, p. 519
[34] Spontaneous single-frequency output from a spatially homogeneous Nd–YAG laser, Appl. Phys. Lett., Volume 16 (1969) no. 3, p. 124
[35] Suppression of nonlinear interactions in resonant macroscopic quantum devices: the example of the solid-state ring laser gyroscope, Phys. Rev. Lett., Volume 100 (2008), p. 183901
[36] Sagnac effect, Rev. Mod. Phys., Volume 39 (1967) no. 2, p. 475
[37] Light drag in a ring laser: an improved determination of the drag coefficient, Phys. Rev. A, Volume 16 (1977), p. 313
[38] Oscillation regimes of a solid-state ring laser with active beat-note stabilization: from a chaotic device to a ring-laser gyroscope, Phys. Rev. A, Volume 76 (2007) no. 2, p. 023807
[39] Multiple Scale and Singular Perturbation Methods, Springer, 1996
[40] Averaging Methods in Nonlinear Dynamical Systems, Springer, 2007
[41] Performance evaluation of a solid-state ring laser gyro, Karlsruhe, Germany (2010)
[42] Laser gyro at quantum limit, IEEE J. Quantum Electron., Volume 16 (1980) no. 12, p. 1376
Cité par Sources :
Commentaires - Politique