Comptes Rendus
Slow granular flows: The dominant role of tiny fluctuations
[Écoulements granulaires lents : Le rôle dominant des très petites fluctuations]
Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 37-44.

Quel est le mécanisme qui gouverne les écoulements lents d'un milieu granulaire ? À l'échelle microscopique, les grains sont soumis à des contacts frottants. Cependant, une interprétation directe de ces écoulements par une rhéologie macroscopique, dans laquelle les contraintes de cisaillement seraient proportionnelles aux contraintes normales avec un coefficient de frottement indépendant de la vitesse, ne permet pas de reproduire certaines propriétés importantes des écoulements lents. Il est maintenant clair que, lorsqu'elles sont associées à de grandes fluctuations des forces de contact, de très petites fluctuations des positions des grains jouent un rôle capital dans ces écoulements. Bien que l'agitation des grains provienne de zones en mouvement, elle pénètre profondément dans les régions inactives, donnant ainsi naissance à une rhéologie non locale.

What mechanism governs slow flows of granular media? Microscopically, the grains experience enduring frictional contacts in these flows. However, a straightforward translation to a macroscopic frictional rheology, where the shear stresses are proportional to the normal stresses with a rate-independent friction coefficient, fails to capture important aspects of slow granular flows. There is now overwhelming evidence that agitations, tiny fluctuations of the grain positions, associated with large fluctuation of their contact forces, play a central role for slow granular flows. These agitations are generated in flowing regions, but travel deep inside the quiescent zones, and lead to a nonlocal rheology.

Publié le :
DOI : 10.1016/j.crhy.2014.11.004
Keywords: Slow granular flows, Rheology, Nonlocal models, Agitations
Mot clés : Écoulements granulaires lents, Rhéologie, Modèles non locaux, Agitation granulaire
Martin van Hecke 1

1 Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands
@article{CRPHYS_2015__16_1_37_0,
     author = {Martin van Hecke},
     title = {Slow granular flows: {The} dominant role of tiny fluctuations},
     journal = {Comptes Rendus. Physique},
     pages = {37--44},
     publisher = {Elsevier},
     volume = {16},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crhy.2014.11.004},
     language = {en},
}
TY  - JOUR
AU  - Martin van Hecke
TI  - Slow granular flows: The dominant role of tiny fluctuations
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 37
EP  - 44
VL  - 16
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.11.004
LA  - en
ID  - CRPHYS_2015__16_1_37_0
ER  - 
%0 Journal Article
%A Martin van Hecke
%T Slow granular flows: The dominant role of tiny fluctuations
%J Comptes Rendus. Physique
%D 2015
%P 37-44
%V 16
%N 1
%I Elsevier
%R 10.1016/j.crhy.2014.11.004
%G en
%F CRPHYS_2015__16_1_37_0
Martin van Hecke. Slow granular flows: The dominant role of tiny fluctuations. Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 37-44. doi : 10.1016/j.crhy.2014.11.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.11.004/

[1] D.M. Mueth et al. Signatures of granular microstructure in dense shear flows, Nature, Volume 406 (2000), p. 385

[2] R.R. Hartley; R.P. Behringer Logarithmic rate dependence of force networks in sheared granular materials, Nature, Volume 421 (2003), p. 928

[3] D. Fenistein; M. van Hecke; D. Fenistein; J.-W. van de Meent; M. van Hecke; D. Fenistein; J.-W. van de Meent; M. van Hecke Core precession and global modes in granular bulk flow, Phys. Rev. Lett., Volume 425 (2003), p. 256

[4] GDR MiDi Collaboration On dense granular flows, Eur. Phys. J. E, Volume 14 (2004), p. 341

[5] P. Jop; Y. Forterre; O. Pouliquen A constitutive law for dense granular flows, Nature, Volume 441 (2006), p. 727

[6] Y. Forterre; O. Pouliquen Flows of dense granular media, Annu. Rev. Fluid Mech., Volume 40 (2008), p. 1

[7] J.A. Dijksman et al. From frictional to viscous behavior: three-dimensional imaging and rheology of gravitational suspensions, Phys. Rev. E, Volume 82 (2010), p. 060301

[8] J.A. Dijksman et al. Jamming, yielding, and rheology of weakly vibrated granular media, Phys. Rev. Lett., Volume 107 (2011), p. 108303

[9] L. Bocquet et al. Granular shear flow dynamics and forces: experiment and continuum theory, Phys. Rev. E, Volume 65 (2002), p. 011307

[10] F. Da Cruz; F. Chevoir; D. Bonn; P. Coussot Viscosity bifurcation in granular materials, foams, and emulsions, Phys. Rev. E, Volume 66 (2002), p. 051305

[11] J. Duran Sands, Powders and Grains: An Introduction to the Physics of Granular Materials, Springer, New York, 1999

[12] P. Schall; M. van Hecke Shear bands in matter with granularity, Annu. Rev. Fluid Mech., Volume 42 (2010), p. 67

[13] R.M. Nedderman; C. Laohakul Thickness of the shear zone of flowing granular-materials, Powder Technol., Volume 25 (1980), p. 91

[14] M. Depken; W. van Saarloos; M. van Hecke Continuum approach to wide shear zones in quasistatic granular matter, Phys. Rev. E, Volume 73 (2006), p. 031302

[15] M. Depken et al. Stresses in smooth flows of dense granular media, Europhys. Lett., Volume 78 (2007), p. 58001

[16] J. Goyon et al. Spatial cooperativity in soft glassy flows, Nature, Volume 454 (2008), p. 84

[17] K. Nichol; A. Zanin; R. Bastien; E. Wandersman; M. van Hecke; K. Nichol; M. van Hecke Flow-induced agitations create a granular fluid: effective viscosity and fluctuations, Phys. Rev. E, Volume 104 (2010), p. 078302

[18] K.A. Reddy; Y. Forterre; O. Pouliquen Evidence of mechanically activated processes in slow granular flows, Phys. Rev. Lett., Volume 106 (2011), p. 108301

[19] K. Kamrin; G. Koval Nonlocal constitutive relation for steady granular flow, Phys. Rev. Lett., Volume 108 (2012), p. 178301

[20] M. Bouzid et al. Nonlocal rheology of granular flows across yield conditions, Phys. Rev. Lett., Volume 111 (2013), p. 238301

[21] L. Bocquet; A. Collin; A. Ajdari Kinetic theory of plastic flow in soft glassy materials, Phys. Rev. Lett., Volume 103 (2009), p. 036001

[22] D. Henann; K. Kamrin A predictive, size-dependent continuum model for dense granular flows, Proc. Natl. Acad. Sci. USA, Volume 110 (2013), p. 6730

[23] G. Katgert et al. Couette flow of two-dimensional foams, Europhys. Lett., Volume 90 (2010), p. 54002

[24] X. Cheng et al. Three-dimensional shear in granular flow, Phys. Rev. Lett., Volume 96 (2006), p. 038001

[25] J.A. Dijksman; M. van Hecke Granular flows in split-bottom geometries, Soft Matter, Volume 6 (2010), p. 2901

[26] T. Baumberger; C. Caroli Solid friction from stick-slip down to pinning and aging, Adv. Phys., Volume 55 (2006), p. 279

[27] P. Coussot Rheometry of Pastes, Suspensions and Granular Materials, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005

[28] P. Mills; P.G. Rognon; F. Chevoir Rheology and structure of granular materials near the jamming transition, Europhys. Lett., Volume 81 (2008), p. 64005

[29] D. Howell; R.P. Behringer; C. Veje Stress fluctuations in a 2D granular Couette experiment: a continuous transition, Phys. Rev. Lett., Volume 82 (1999), p. 5241

[30] D.W. Howell; R.P. Behringer; C.T. Veje Fluctuations in granular media, Chaos, Volume 9 (1999), p. 559

[31] W. Losert et al. Particle dynamics in sheared granular matter, Phys. Rev. Lett., Volume 85 (2000), p. 1428

[32] M. Latzel et al. Comparing simulation and experiment of a 2D granular Couette shear device, Eur. Phys. J. E, Volume 11 (2003), p. 325

[33] G. Chambon et al. Shear with comminution of a granular material: microscopic deformations outside the shear band, Phys. Rev. E, Volume 68 (2003), p. 011304

[34] T.S. Komatsu et al. Creep motion in a granular pile exhibiting steady surface flow, Phys. Rev. Lett., Volume 86 (2001), p. 1757

[35] P. Richard Rheology of confined granular flows: scale invariance, glass transition, and friction weakening, Phys. Rev. Lett., Volume 101 (2008), p. 248002

[36] E. Wandersman; M. van Hecke Nonlocal granular rheology: role of pressure and anisotropy, Europhys. Lett., Volume 105 (2014), p. 24002

[37] T. Unger et al. Shear band formation in granular media as a variational problem, Phys. Rev. Lett., Volume 92 (2004), p. 214301

[38] G.H. Wortel; J.A. Dijksman; M. van Hecke Rheology of weakly vibrated granular media, Phys. Rev. E, Volume 89 (2014), p. 012202

[39] J.H. Snoeijer; et al.; B.P. Tighe et al. The force network ensemble for granular packings, Soft Matter, Volume 92 (2004), p. 054302

[40] R. Gutfraind; O. Pouliquen; O. Pouliquen; N. Gutfraind Stress fluctuations and shear zones in quasistatic granular chute flows, Phys. Rev. E, Volume 24 (1996), p. 552

[41] P. Jop Hydrodynamic modeling of granular flows in a modified Couette cell, Phys. Rev. E, Volume 77 (2008), p. 032301

[42] M. Toiya; J. Stambaugh; W. Losert Transient and oscillatory granular shear flow, Phys. Rev. Lett., Volume 93 (2004), p. 088001

[43] T.S. Majmudar; R.P. Behringer Contact force measurements and stress-induced anisotropy in granular materials, Nature, Volume 435 (2005), p. 1079

[44] D.A. Huerta et al. Archimedes' principle in fluidized granular systems, Phys. Rev. E, Volume 72 (2005), p. 031307

[45] G. Koval; J.-N. Roux; A. Corfdir; F. Chevoir Phys. Rev. E, 79 (2009), p. 021306

[46] T. Weinhart; R. Hartkamp; A.R. Thornton; S. Luding Phys. Fluids, 25 (2013), p. 070605

[47] D.L. Henann; K. Kamrin Int. J. Plast., 60 (2014), p. 145

[48] P. Sollich et al. Rheology of soft glassy materials, Phys. Rev. Lett., Volume 78 (1997), p. 2020

[49] N.A. Spenley; M.E. Cates; T.C.B. Mcleish Nonlinear rheology of wormlike micelles, Phys. Rev. Lett., Volume 71 (1993), p. 939

[50] H.M. Jaeger; C.-H. Liu; S.R. Nagel; T.A. Witten Friction in granular flows, Europhys. Lett., Volume 11 (1990), p. 619

[51] O. Kuwano; R. Ando; T. Hatano Geophys. Res. Lett., 40 (2013), p. 1295

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Rheology of aqueous foams

Benjamin Dollet; Christophe Raufaste

C. R. Phys (2014)


Dense flows of dry granular material

Olivier Pouliquen; François Chevoir

C. R. Phys (2002)


Rheological properties of dense granular flows

Pierre Jop

C. R. Phys (2015)