What mechanism governs slow flows of granular media? Microscopically, the grains experience enduring frictional contacts in these flows. However, a straightforward translation to a macroscopic frictional rheology, where the shear stresses are proportional to the normal stresses with a rate-independent friction coefficient, fails to capture important aspects of slow granular flows. There is now overwhelming evidence that agitations, tiny fluctuations of the grain positions, associated with large fluctuation of their contact forces, play a central role for slow granular flows. These agitations are generated in flowing regions, but travel deep inside the quiescent zones, and lead to a nonlocal rheology.
Quel est le mécanisme qui gouverne les écoulements lents d'un milieu granulaire ? À l'échelle microscopique, les grains sont soumis à des contacts frottants. Cependant, une interprétation directe de ces écoulements par une rhéologie macroscopique, dans laquelle les contraintes de cisaillement seraient proportionnelles aux contraintes normales avec un coefficient de frottement indépendant de la vitesse, ne permet pas de reproduire certaines propriétés importantes des écoulements lents. Il est maintenant clair que, lorsqu'elles sont associées à de grandes fluctuations des forces de contact, de très petites fluctuations des positions des grains jouent un rôle capital dans ces écoulements. Bien que l'agitation des grains provienne de zones en mouvement, elle pénètre profondément dans les régions inactives, donnant ainsi naissance à une rhéologie non locale.
Mots-clés : Écoulements granulaires lents, Rhéologie, Modèles non locaux, Agitation granulaire
Martin van Hecke 1
@article{CRPHYS_2015__16_1_37_0, author = {Martin van Hecke}, title = {Slow granular flows: {The} dominant role of tiny fluctuations}, journal = {Comptes Rendus. Physique}, pages = {37--44}, publisher = {Elsevier}, volume = {16}, number = {1}, year = {2015}, doi = {10.1016/j.crhy.2014.11.004}, language = {en}, }
Martin van Hecke. Slow granular flows: The dominant role of tiny fluctuations. Comptes Rendus. Physique, Granular physics / Physique des milieux granulaires, Volume 16 (2015) no. 1, pp. 37-44. doi : 10.1016/j.crhy.2014.11.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.11.004/
[1] et al. Signatures of granular microstructure in dense shear flows, Nature, Volume 406 (2000), p. 385
[2] Logarithmic rate dependence of force networks in sheared granular materials, Nature, Volume 421 (2003), p. 928
[3] Core precession and global modes in granular bulk flow, Phys. Rev. Lett., Volume 425 (2003), p. 256
[4] On dense granular flows, Eur. Phys. J. E, Volume 14 (2004), p. 341
[5] A constitutive law for dense granular flows, Nature, Volume 441 (2006), p. 727
[6] Flows of dense granular media, Annu. Rev. Fluid Mech., Volume 40 (2008), p. 1
[7] et al. From frictional to viscous behavior: three-dimensional imaging and rheology of gravitational suspensions, Phys. Rev. E, Volume 82 (2010), p. 060301
[8] et al. Jamming, yielding, and rheology of weakly vibrated granular media, Phys. Rev. Lett., Volume 107 (2011), p. 108303
[9] et al. Granular shear flow dynamics and forces: experiment and continuum theory, Phys. Rev. E, Volume 65 (2002), p. 011307
[10] Viscosity bifurcation in granular materials, foams, and emulsions, Phys. Rev. E, Volume 66 (2002), p. 051305
[11] Sands, Powders and Grains: An Introduction to the Physics of Granular Materials, Springer, New York, 1999
[12] Shear bands in matter with granularity, Annu. Rev. Fluid Mech., Volume 42 (2010), p. 67
[13] Thickness of the shear zone of flowing granular-materials, Powder Technol., Volume 25 (1980), p. 91
[14] Continuum approach to wide shear zones in quasistatic granular matter, Phys. Rev. E, Volume 73 (2006), p. 031302
[15] et al. Stresses in smooth flows of dense granular media, Europhys. Lett., Volume 78 (2007), p. 58001
[16] et al. Spatial cooperativity in soft glassy flows, Nature, Volume 454 (2008), p. 84
[17] Flow-induced agitations create a granular fluid: effective viscosity and fluctuations, Phys. Rev. E, Volume 104 (2010), p. 078302
[18] Evidence of mechanically activated processes in slow granular flows, Phys. Rev. Lett., Volume 106 (2011), p. 108301
[19] Nonlocal constitutive relation for steady granular flow, Phys. Rev. Lett., Volume 108 (2012), p. 178301
[20] et al. Nonlocal rheology of granular flows across yield conditions, Phys. Rev. Lett., Volume 111 (2013), p. 238301
[21] Kinetic theory of plastic flow in soft glassy materials, Phys. Rev. Lett., Volume 103 (2009), p. 036001
[22] A predictive, size-dependent continuum model for dense granular flows, Proc. Natl. Acad. Sci. USA, Volume 110 (2013), p. 6730
[23] et al. Couette flow of two-dimensional foams, Europhys. Lett., Volume 90 (2010), p. 54002
[24] et al. Three-dimensional shear in granular flow, Phys. Rev. Lett., Volume 96 (2006), p. 038001
[25] Granular flows in split-bottom geometries, Soft Matter, Volume 6 (2010), p. 2901
[26] Solid friction from stick-slip down to pinning and aging, Adv. Phys., Volume 55 (2006), p. 279
[27] Rheometry of Pastes, Suspensions and Granular Materials, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005
[28] Rheology and structure of granular materials near the jamming transition, Europhys. Lett., Volume 81 (2008), p. 64005
[29] Stress fluctuations in a 2D granular Couette experiment: a continuous transition, Phys. Rev. Lett., Volume 82 (1999), p. 5241
[30] Fluctuations in granular media, Chaos, Volume 9 (1999), p. 559
[31] et al. Particle dynamics in sheared granular matter, Phys. Rev. Lett., Volume 85 (2000), p. 1428
[32] et al. Comparing simulation and experiment of a 2D granular Couette shear device, Eur. Phys. J. E, Volume 11 (2003), p. 325
[33] et al. Shear with comminution of a granular material: microscopic deformations outside the shear band, Phys. Rev. E, Volume 68 (2003), p. 011304
[34] et al. Creep motion in a granular pile exhibiting steady surface flow, Phys. Rev. Lett., Volume 86 (2001), p. 1757
[35] Rheology of confined granular flows: scale invariance, glass transition, and friction weakening, Phys. Rev. Lett., Volume 101 (2008), p. 248002
[36] Nonlocal granular rheology: role of pressure and anisotropy, Europhys. Lett., Volume 105 (2014), p. 24002
[37] et al. Shear band formation in granular media as a variational problem, Phys. Rev. Lett., Volume 92 (2004), p. 214301
[38] Rheology of weakly vibrated granular media, Phys. Rev. E, Volume 89 (2014), p. 012202
[39] et al. The force network ensemble for granular packings, Soft Matter, Volume 92 (2004), p. 054302
[40] Stress fluctuations and shear zones in quasistatic granular chute flows, Phys. Rev. E, Volume 24 (1996), p. 552
[41] Hydrodynamic modeling of granular flows in a modified Couette cell, Phys. Rev. E, Volume 77 (2008), p. 032301
[42] Transient and oscillatory granular shear flow, Phys. Rev. Lett., Volume 93 (2004), p. 088001
[43] Contact force measurements and stress-induced anisotropy in granular materials, Nature, Volume 435 (2005), p. 1079
[44] et al. Archimedes' principle in fluidized granular systems, Phys. Rev. E, Volume 72 (2005), p. 031307
[45] Phys. Rev. E, 79 (2009), p. 021306
[46] Phys. Fluids, 25 (2013), p. 070605
[47] Int. J. Plast., 60 (2014), p. 145
[48] et al. Rheology of soft glassy materials, Phys. Rev. Lett., Volume 78 (1997), p. 2020
[49] Nonlinear rheology of wormlike micelles, Phys. Rev. Lett., Volume 71 (1993), p. 939
[50] Friction in granular flows, Europhys. Lett., Volume 11 (1990), p. 619
[51] Geophys. Res. Lett., 40 (2013), p. 1295
Cited by Sources:
Comments - Policy