This paper discusses strain localisation in granular media by presenting experimental, full-field analysis of mechanical tests on sand, both at a continuum level, as well as at the grain scale. At the continuum level, the development of structures of localised strain can be studied. Even at this scale, the characteristic size of the phenomena observed is in the order of a few grains. In the second part of this paper, therefore, the development of shear bands within specimen of different sands is studied at the level of the individual grains, measuring grains kinematics with x-ray tomography. The link between grain angularity and grain rotation within shear bands is shown, allowing a grain-scale explanation of the difference in macroscopic residual stresses for materials with different grain shapes. Finally, rarely described precursors of localisation, emerging well before the stress peak are observed and commented.
Cet article est une introduction à la physique de la localisation de la déformation dans les milieux granulaires. Il présente les caractéristiques essentielles du phénomène d'émergence et de développement de structures de déformation localisée, qu'on appelle généralement des bandes de cisaillement. Il s'appuie sur l'observation expérimentale de champs de déformation dans des essais mécaniques de laboratoire, à deux échelles d'observation : l'une, macroscopique, à laquelle le milieu granulaire est observé comme un milieu continu, et l'autre, qu'on qualifiera de microscopique sans notion d'unités de mesure, à l'échelle du grain. À l'échelle macroscopique, l'observation continue quantitative par des techniques photogrammétriques révèle l'apparition du phénomène et son développement sous forme de structures à l'échelle de l'échantillon. Même à cette échelle, la taille caractéristique des phénomènes observés se révèle être de quelques grains. À l'échelle microscopique, un suivi exhaustif en 3D de tous les grains d'échantillon de sables soumis au même type d'essais peut désormais être réalisé en utilisant la microtomographie à rayons X, et c'est l'objet de la seconde partie de cet article. Le lien entre l'angularité des grains et leur rotation dans les bandes est montré, ce qui permet d'avancer des explication microscopiques à diverses observations macroscopiques qui ignorent l'aspect discret du milieu. Incidemment, des phénomènes rarement décrits – qui paraissent être des précurseurs de localisation apparaissant bien avant le pic – sont observés et commentés.
Mot clés : Localisation de la déformation, Matériaux granulaires, Essais biaxiaux et triaxiaux, Tomographie à rayons X, Mesures de champs, Précurseurs de localisation
Jacques Desrues 1, 2; Edward Andò 1, 2
@article{CRPHYS_2015__16_1_26_0, author = {Jacques Desrues and Edward And\`o}, title = {Strain localisation in granular media}, journal = {Comptes Rendus. Physique}, pages = {26--36}, publisher = {Elsevier}, volume = {16}, number = {1}, year = {2015}, doi = {10.1016/j.crhy.2015.01.001}, language = {en}, }
Jacques Desrues; Edward Andò. Strain localisation in granular media. Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 26-36. doi : 10.1016/j.crhy.2015.01.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.001/
[1] The influence of strains in soil mechanics, Geotechnique, Volume 20 (1970) no. 2, pp. 129-170
[2] Formation of shear bands in sand bodies as a bifurcation problem, Int. J. Numer. Anal. Methods Geomech., Volume 2 (1978) no. 2, pp. 99-128
[3] Strength and deformation characteristics of saturated sand at extremely low pressures, Soil Found., Volume 24 (1984) no. 4, pp. 30-48
[4] Localization of the deformation in tests on sand sample, Eng. Fract. Mech., Volume 21 (1985) no. 4, pp. 909-921
[5] Naissance des bandes de cisaillement dans les milieux granulaires: expérience et théorie, Manuel de rhéologie des geomateriaux, 1985, pp. 279-298
[6] Use of stereophotogrammetry to analyze the development of shear bands in sand, ASTM Geotech. Test. J., Volume 18 (1995) no. 4, pp. 405-420
[7] Strain localization measurements in undrained plane-strain biaxial tests on Hostun RF sand, Mech. Cohes.-Frict. Mater., Volume 4 (1999) no. 4, pp. 419-441
[8] Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell, Int. J. Rock Mech. Min. Sci., Volume 37 (2000) no. 8, pp. 1223-1237
[9] Compacting and dilating shear bands in porous rock: theoretical and experimental conditions, J. Geophys. Res., Solid Earth, Volume 106 (2001) no. B7, pp. 13435-13442
[10] Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry, Int. J. Numer. Anal. Methods Geomech., Volume 28 (2004) no. 4, pp. 279-321
[11] Microstructure in shear band observed by microfocus X-ray computed tomography, Geotechnique, Volume 54 (2004) no. 8, pp. 539-542
[12] Essai sur une application des règles de maximis & minimis à quelques problèmes de statique, relatifs à l'architecture, De l'Imprimerie Royale, 1776
[13] Mesure du champ de déformation d'un objet plan par la méthode stéréophotogrammétrique de faux relief, J. Méc. Théor. Appl., Volume 3 (1984) no. 1, pp. 79-103
[14] Stereophotogrammetry and localization in concrete under compression, J. Eng. Mech., Volume 117 (1991) no. 7, pp. 1455-1465
[15] Triaxial testing of granular soil under elevated cell pressure, ASTM Special Technical Publication, vol. 977, 1988, pp. 290-310
[16] Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography, Geotechnique, Volume 46 (1996) no. 3, pp. 529-546
[17] Tracking strain localization in geomaterials using computerized tomography, X-Ray CT for Geomaterials, 2004, pp. 15-41
[18] Compaction bands: a structural analog for anti-mode I cracks in aeolian sandstone, Tectonophysics, Volume 267 (1996) no. 1, pp. 209-228
[19] Localization: shear bands and compaction bands, Int. Geophys., Volume 89 (2004), pp. 219-322
[20] 1γ2ε': a new shear apparatus to study the behavior of granular materials, ASTM Geotech. Test. J., Volume 15 (1992) no. 2, pp. 129-137
[21] Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path, Mech. Cohes.-Frict. Mater., Volume 2 (1997), pp. 121-163
[22] Statistical properties of granular materials near jamming, J. Stat. Mech. Theory Exp., Volume 2014 (2014) no. 6, p. P06004 http://stacks.iop.org/1742-5468/2014/i=6/a=P06004
[23] Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach, Acta Geotech., Volume 7 (2012) no. 1, pp. 1-13
[24] Experimental micromechanics: grain-scale observation of sand deformation, Géotech. Lett., Volume 2 (2012) no. 3, pp. 107-112
[25] Estimation of separating planes between touching 3D objects using power watershed, Mathematical Morphology and Its Applications to Signal and Image Processing, Springer, 2013, pp. 452-463
[26] Characterization of the early strain localization in a sandstone and a clay rock, IWBDG 2014, Hong-Kong, May 28–30, 2014 (2014) (oral communication)
[27] Localised deformation patterning in 2D granular materials revealed by digital image correlation, Granul. Matter, Volume 12 (2010) no. 1, pp. 1-14
[28] A biaxial apparatus for the study of heterogeneous and intermittent strains in granular materials, Granul. Matter, Volume 16 (2014) no. 1, pp. 1-8 | DOI
[29] Experimental micro-mechanics of granular media studied by X-ray tomography: recent results and challenges, Géotech. Lett., Volume 3 (2013), pp. 142-146
Cited by Sources:
Comments - Policy